Abstract

The fractional Laplacian $(-\Delta)^{\alpha/2}$ is a nonlocal operator which depends on the parameter $\alpha$ and recovers the usual Laplacian as $\alpha \to 2$. A numerical method for the fractional Laplacian is proposed, based on the singular integral representation for the operator. The method combines finite differences with numerical quadrature to obtain a discrete convolution operator with positive weights. The accuracy of the method is shown to be $O(h^{3-\alpha})$. Convergence of the method is proven. The treatment of far field boundary conditions using an asymptotic approximation to the integral is used to obtain an accurate method. Numerical experiments on known exact solutions validate the predicted convergence rates. Computational examples include exponentially and algebraically decaying solutions with varying regularity. The generalization to nonlinear equations involving the operator is discussed: the obstacle problem for the fractional Laplacian is computed.

Keywords

  1. fractional Laplacian
  2. partial differential equations
  3. numerical method
  4. finite difference method

MSC codes

  1. 26A33
  2. 65M06
  3. 41A55

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Numerical Methods for the Fractional Laplacian: a Finite Difference-quadrature Approach

Authors: Adam Oberman and Yanghong Huang

File: flnumericssupplementary.pdf

Type: PDF

Contents: quantitative comparison of the different numerical method

References

1.
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge Stud. Adv. Math. 116, Cambridge University Press, Cambridge, UK, 2009.
2.
O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, in Ann. Inst. H. Poincaréé Anal. Non Linééaire, 13 (1996), pp. 293--–317.
3.
P. Biler, T. Funaki, and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations, 148 (1998), pp. 9--46.
4.
P. Biler, C. Imbert, and G. Karch, Barenblatt profiles for a nonlocal porous medium equation, C. R. Math. Acad. Sci. Paris, 349 (2011), pp. 641--645.
5.
I. H. Biswas, E. R. Jakobsen, and K. H. Karlsen, Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs, J. Hyperbolic Differential Equations, 5 (2008), pp. 187--219.
6.
I. H. Biswas, E. R. Jakobsen, and K. H. Karlsen, Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE, SIAM J. Numer. Anal., 48 (2010), pp. 1110--1135.
7.
N. Burch and R. B. Lehoucq, Computing the Exit-Time for a Finite-Range Symmetric Jump Process, Technical Report SAND 2013-2354J, Sandia National Labs, Albuquerque, NM, 2013.
8.
S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), pp. 413--441.
9.
S. Cifani, E. R. Jakobsen, and K. H. Karlsen, The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal., 31 (2011), pp. 1090--1122.
10.
S. Cifani, E. R. Jakobsen, and K. H. Karlsen, The discontinuous Galerkin method for fractional degenerate convection-diffusion equations, BIT, 51 (2011), pp. 809--844.
11.
A. V. Chechkin, R. Metzler, V. Y. Gonchar, J. Klafter, and L. V. Tanatarov, First passage and arrival time densities for Lévy flights and the failure of the method of images, J. Phys. A, 36 (2003), pp. L537--L544.
12.
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), pp. 1245--1260.
13.
L. A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), pp. 425--461.
14.
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Math. Ser. 133, Chapman & Hall/CRC, Boca Raton, FL, 2004.
15.
R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J. Numer. Anal., 43 (2005), pp. 1596--1626.
16.
L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202 (2011), pp. 537--565.
17.
L. A. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Contin. Dyn. Syst., 29 (2011), pp. 1393--1404.
18.
S. Das, Functional Fractional Calculus, 2nd ed., Springer-Verlag, Berlin, 2011.
19.
K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 743--773.
20.
M. D'Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), pp. 1245--1260.
21.
Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), pp. 667--696.
22.
A. de Pablo, F. Quirós, A. Rodríguez, and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), pp. 1378--1409.
23.
J. Droniou, A numerical method for fractal conservation laws, Math. Comp., 79 (2010), pp. 95--124.
24.
F. del Teso, Finite difference method for a fractional porous medium equation, Calcolo, 50 (2013), pp. 1--24.
25.
F. del Teso and J. L. Vázquez, Finite Difference Method for a General Fractional Porous Medium Equation, preprint, arXiv:1307.2474, 2013.
26.
R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), pp. 75--90.
27.
R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion processes, Fract. Calc. Appl. Anal., 1 (1998), pp. 167--191.
28.
R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011.
29.
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, 2000.
30.
Y. Huang and A. M. Oberman, Numerical methods for the fractional Laplacian: A comparative study, in preparation.
31.
N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der Mathematischen Wissenschaften 180, Springer-Verlag, New York, 1972.
32.
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Paperback reprint of the 2003 edition, Texts Appl. Math. 45, Springer-Verlag, Berlin, 2009
33.
R. H. Nochetto, E. Otarola, and A. J. Salgado, A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis, preprint, arXiv:1302.0698, 2013.
34.
A. M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton--Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44 (2006), pp. 879--895.
35.
K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, London, 1974.
36.
S. Raible, Lévy Processes in Finance: Theory, Numerics, and Empirical Facts, Ph.D. thesis, Universität Freiburg i. Br., Freiburg im Breisgau, Germany 2000.
37.
L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55 (2006), pp. 1155--1174.
38.
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), pp. 67--112.
39.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.
40.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University Press, Princeton, NJ, 1970.
41.
X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51 (2013), pp. 3458--3482.
42.
C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), pp. 205--213.
43.
A. Truman and J.-L. Wu, Fractal Burgers' equation driven by Lévy noise, in Stochastic Partial Differential Equations and Applications---VII, Lect. Notes Pure Appl. Math. 245, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 295--310.
44.
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), pp. 33--44.
45.
A. Zoia, A. Rosso, and M. Kardar, Fractional Laplacian in bounded domains, Phys. Rev. E, 76 (2007), 021116.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 3056 - 3084
ISSN (online): 1095-7170

History

Submitted: 24 January 2014
Accepted: 22 August 2014
Published online: 18 December 2014

Keywords

  1. fractional Laplacian
  2. partial differential equations
  3. numerical method
  4. finite difference method

MSC codes

  1. 26A33
  2. 65M06
  3. 41A55

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media