Abstract

This article focuses on solving the generalized eigenvalue problems (GEP) arising in the source-free Maxwell equation with magnetoelectric coupling effects that models three-dimensional complex media. The goal is to compute the smallest positive eigenvalues, and the main challenge is that the coefficient matrix in the discrete Maxwell equation is indefinite and degenerate. To overcome this difficulty, we derive a singular value decomposition (SVD) of the discrete single-curl operator and then explicitly express the basis of the invariant subspace corresponding to the nonzero eigenvalues of the GEP. Consequently, we reduce the GEP to a null space free standard eigenvalue problem (NFSEP) that contains only the nonzero (complex) eigenvalues of the GEP and can be solved by the shift-and-invert Arnoldi method without being disturbed by the null space. Furthermore, the basis of the eigendecomposition is chosen carefully so that we can apply fast Fourier transformation (FFT-) based matrix vector multiplication to solve the embedded linear systems efficiently by an iterative method. For chiral and pseudochiral complex media, which are of great interest in magnetoelectric applications, the NFSEP can be further transformed to a null space free GEP whose coefficient matrices are Hermitian and Hermitian positive definite (HHPD-NFGEP). This HHPD-NFGEP can be solved by using the invert Lanczos method without shifting. Furthermore, the embedded linear system can be solved efficiently by using the conjugate gradient method without preconditioning and the FFT-based matrix vector multiplications. Numerical results are presented to demonstrate the efficiency of the proposed methods.

Keywords

  1. singular value decomposition
  2. null space free method
  3. discrete single-curl operator
  4. the Maxwell equations
  5. chiral medium
  6. pseudochiral medium

MSC codes

  1. 65F15
  2. 65T50
  3. 15A18
  4. 15A23

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
X. Cheng, H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, Negative refraction and cross polarization effects in metamaterial realized with bianisotropic s-ring resonator, Phys. Rev. B, 76 (2007), 024402.
2.
R.-L. Chern, Anomalous dispersion in pseudochiral media: Negative refraction and backward wave, J. Phys. D, 46 (2013), 125307.
3.
R.-L. Chern, Wave propagation in chiral media: Composite Fresnel equations, J. Opt., 15 (2013), 075702.
4.
R.-L. Chern and P.-H. Chang, Negative refraction and backward wave in chiral mediums: Illustrations of Gaussian beams, J. Appl. Phys., 113 (2013), 153504.
5.
R.-L. Chern and P.-H. Chang, Negative refraction and backward wave in pseudochiral mediums: Illustrations of Gaussian beams, Opt. Express, 21 (2013), pp. 2657--2666.
6.
R.-L. Chern and P.-H. Chang, Wave propagation in pseudochiral media: Generalized Fresnel equations, J. Opt. Soc. Amer. B, 30 (2013), pp. 552--558.
7.
R. L. Chern, C. C. Chang, C.-C. Chang, and R. R. Hwang, Numerical study of three-dimensional photonic crystals with large band gaps, J. Phys. Soc. Japan, 73 (2004), pp. 727--737.
8.
J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, Two-dimensional photonic band structure in the chiral medium-transfer matrix method, Opt. Commun., 142 (1997), pp. 179--183.
9.
C. Engström and M. Richter, On the spectrum of an operator pencil with applications to wave propagation in periodic and frequency dependent materials, SIAM J. Appl. Math., 70 (2009), pp. 231--247.
10.
P.-F. Hsieh, T.-T. Wu, and J.-H. Sun, Three-dimensional phononic band gap calculations using the FDTD method and a pc cluster system, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53 (2006), pp. 148--158.
11.
T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang, Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three dimensional photonic crystals, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 369--391.
12.
T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang, Fast Lanczos Eigenvalue Solvers for Band Structures of Three Dimensional Photonic Crystals with Face-Centered Cubic Lattice, Technical report 2013-3-003, NCTS Preprints in Mathematics, National Tsing Hua University, Hsinchu, Taiwan, 2013.
13.
T.-M. Huang, Y.-C. Kuo, and W. Wang, Computing extremal eigenvalues for three-dimensional photonic crystals with wave vectors near the Brillouin zone center, J. Sci. Comput., 55 (2013), pp. 529--551.
14.
T.-M. Huang, W.-W. Lin, and W. Wang, Matrix Representation of Discrete Differential Operators and Operations in Electromagnetism, Technical report 2014-8-003, NCTS Preprints in Mathematics, National Tsing Hua University, Hsinchu, Taiwan, 2014.
15.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 2008.
16.
E. O. Kamenetskii, Theory of bianisotropic crystal lattices, Phys. Rev. E, 57 (1998), pp. 3563--3573.
17.
C. Kittel, Introduction to Solid State Physics, Wiley, New York, 2005.
18.
J. A. Kong, Theorems of bianisotropic media, Proc. IEEE, 60 (1972), pp. 1036--1046.
19.
J. Lekner, Optical properties of isotropic chiral media, Pure Appl. Opt., 5 (1996), pp. 417--443.
20.
S.-Y. Lin, J. G. Fleming, R. Lin, M. M. Sigalas, R. Biswas, and K. M. Ho, Complete three-dimensional photonic bandgap in a simple cubic structure, J. Opt. Soc. Amer. B, 18 (2001), pp. 32--35.
21.
Y. Liu and X. Zhang, Metamaterials: A new frontier of science and technology, Chem. Soc. Rev., 40 (2011), pp. 2494--2507.
22.
T. G. Mackay and A. Lakhtakia, Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials, Phys. Rev. B, 79 (2009), 235121.
23.
M. Reed and B. Simon, Methods of modern mathematical physics, in Analysis of Operators IV, Academic Press, San Diego, CA, 1978.
24.
K. Schmidt and R. Kappeler, Efficient computation of photonic crystal waveguide modes with dispersive material, Opt. Express, 18 (2010), pp. 7307--7322.
25.
K. Schmidt and P. Kauf, Computation of the band structure of two-dimensional photonic crystals with hp finite elements, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1249--1259.
26.
A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science, New York, 2001.
27.
A. H. Sihvola, A. J. Viitanen, I. V. Lindell, and S. A. Tretyakov, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.
28.
S. A. Tretyakov, A. H. Sihvola, A. A. Sochava, and C. R. Simovski, Magnetoelectric interactions in bi-anisotropic media, J. Electromagn. Waves Appl., 12 (1998), pp. 481--497.
29.
S. A. Tretyakov, C. R. Simovski, and M. Hudlička, Bianisotropic route to the realization and matching of backward-wave metamaterial slabs, Phys. Rev. B, 75 (2007), 153104.
30.
B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M Soukoulis, Chiral metamaterials: Simulations and experiments, J. Opt. A, 11 (2009), 114003.
31.
W. S. Weiglhofer and A. Lakhtakia, Introduction to Complex Mediums for Optics and Electromagnetics, SPIE, Washington, DC, 2003.
32.
K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas and Propagation, 14 (1966), pp. 302--307.
33.
R. Zhao, T. Koschny, and C. M. Soukoulis, Chiral metamaterials: Retrieval of the effective parameters with and without substrate, Optics Express, 18 (2010), pp. 14553--14567.
34.
N. Zhou, J. V. Clark, and K. S. J. Pister, Nodal simulation for MEMS design using SUGAR v0.5, in Proceedings of International Conference on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators, Santa Clara, CA, 1998, pp. 308--313.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 203 - 224
ISSN (online): 1095-7162

History

Submitted: 26 February 2014
Accepted: 4 November 2014
Published online: 26 February 2015

Keywords

  1. singular value decomposition
  2. null space free method
  3. discrete single-curl operator
  4. the Maxwell equations
  5. chiral medium
  6. pseudochiral medium

MSC codes

  1. 65F15
  2. 65T50
  3. 15A18
  4. 15A23

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media