Abstract

In this paper we analyze two-dimensional wavelet reconstructions from Fourier samples within the framework of generalized sampling. For this, we consider both separable compactly supported wavelets and boundary wavelets. We prove that the number of samples that must be acquired to ensure a stable and accurate reconstruction scales linearly with the dimension of the wavelet reconstruction spaces. We also provide numerical experiments that corroborate our theoretical results.

Keywords

  1. generalized sampling
  2. wavelets
  3. Fourier measurements
  4. multiresolution analysis
  5. stability

MSC codes

  1. 42C40
  2. 65T60
  3. 94A20
  4. 65N12
  5. 94A08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Adcock, M. Gataric, and A. C. Hansen, On stable reconstructions from nonuniform Fourier measurements, SIAM J. Imaging Sci., 7 (2014), pp. 1690--1723.
2.
B. Adcock and A. C. Hansen, Generalized Sampling and Infinite-Dimensional Compressed Sensing, DAMTP Technical report 2011/NA12, University of Cambridge, UK, 2011.
3.
B. Adcock and A. C. Hansen, A generalized sampling theorem for stable reconstructions in arbitrary bases, J. Fourier Anal. Appl., 18 (2012), pp. 685--716.
4.
B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal., 32 (2012), pp. 357--388.
5.
B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke, Generalized sampling: Extension to frames and inverse and ill-posed problems, Inverse Problems, 29 (2013), 015008.
6.
B. Adcock, A. C. Hansen, and C. Poon, Beyond consistent reconstructions: Optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem, SIAM J. Math. Anal., 45 (2013), pp. 3132--3167.
7.
B. Adcock, A. C. Hansen, and C. Poon, On optimal wavelet reconstructions from Fourier samples: Linearity and universality of the stable sampling rate, Appl. Comput. Harmon. Anal., 36 (2014), pp. 387--415.
8.
A. Aldroubi, Oblique projections in atomic spaces, Proc. Amer. Math. Soc., 124 (1996), pp. 2051--2060.
9.
S. Bishop, C. Heil, Y. Y. Koo, and J. K. Lim, Invariances of frame sequences under perturbations, Linear Algebra Appl., 432 (2010), pp. 1501--1574.
10.
E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Comm. Pure Appl. Math, (2002), pp. 219--266.
11.
A. Cohen, I. Daubechies, and P. Vial, Wavelet bases on the interval and fast algorithms, Appl. Comput. Harmon. Anal, (1993), pp. 54--81.
12.
G. Corach and A. Maestripieri, Products of orthogonal projections and polar decompositions, Linear Algebra Appl., 434 (2011), pp. 1594--1609.
13.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
14.
F. Deutsch, Best Approximation in Inner Product Spaces, CMS Books in Math. 7, Springer-Verlag, New York, 2001.
15.
Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl., 9 (2003), pp. 77--96.
16.
Y. C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process., 3 (2005), pp. 497--509.
17.
K. Gröchenig, Reconstruction algorithms in irregular sampling, Math. Comp., 59 (1992), pp. 181--194.
18.
T. Hrycak and K. Gröchenig, Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method, J. Comput. Phys., 229 (2010), pp. 933--946.
19.
D. M. Healy, Jr., and J. B. Weaver, Two applications of wavelet transforms in magnetic resonance imaging, IEEE Trans. Inform. Theory, 38 (1992), pp. 840--860.
20.
G. Kutyniok and W.-Q. Lim, Compactly supported shearlets are optimally sparse, J. Approx. Theory, 163 (2011), pp. 1564--1589.
21.
P. Maass, Families of orthogonal two-dimensional wavelets, SIAM J. Math. Anal., 27 (1996), pp. 1454--1481.
22.
S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed., Elsevier/Academic Press, Amsterdam, 2009.
23.
Y. Meyer, Ondelettes, fonctions splines et analyses graduées (Wavelets, spline functions and multiresolution analysis), Rend. Sem. Mat. Univ. Politec. Torino, 45 (1987), pp. 1--42.
24.
L. P. Panych, Theoretical comparison of fourier and wavelet encoding in magnetic resonance imaging, IEEE Trans. Med. Imaging, 15 (1996), pp. 141--53.
25.
D. Potts and M. Tasche, Numerical stability of nonequispaced fast Fourier transforms, J. Comput. Appl. Math., 222 (2008), pp. 655--674.
26.
W.-S. Tang, Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces, Proc. Amer. Math. Soc., 128 (2000), pp. 463--473.
27.
M. Unser, Sampling---50 years after Shannon, Proc. IEEE, 88 (2000), pp. 569--587.
28.
M. Unser and A. Aldroubi, A general sampling theory for nonideal acquisition devices, IEEE Trans. Signal Process., 42 (1994), pp. 2915--2925.
29.
M. Unser and A. Aldroubi, A review of wavelets in biomedical applications, Proc. IEEE, 84 (1996), pp. 626--638.
30.
M. Unser, A. Aldroubi, and A. F. Laine, Guest editorial: wavelets in medical imaging, IEEE Trans. Med. Imaging, 22 (2003), pp. 285--288.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1196 - 1233
ISSN (online): 1095-7154

History

Submitted: 3 March 2014
Accepted: 11 December 2014
Published online: 2 April 2015

Keywords

  1. generalized sampling
  2. wavelets
  3. Fourier measurements
  4. multiresolution analysis
  5. stability

MSC codes

  1. 42C40
  2. 65T60
  3. 94A20
  4. 65N12
  5. 94A08

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media