Multilevel Monte Carlo Approximation of Distribution Functions and Densities
Abstract
We construct and analyze multilevel Monte Carlo methods for the approximation of distribution functions and densities of univariate random variables. Since, by assumption, the target distribution is not known explicitly, approximations have to be used. We provide a general analysis under suitable assumptions on the weak and strong convergence. We apply the results to smooth path-independent and path-dependent functionals and to stopped exit times of stochastic differential equations (SDEs).
1. , Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme , Ann. Appl. Probab. , 24 ( 2014 ), pp. 1049 -- 1080 .
2. , Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized Heston model using Malliavin integration by parts , SIAM J. Financial Math. , 6 ( 2015 ), pp. 22 -- 52 .
3. , On irregular functionals of SDEs and the Euler scheme , Finance Stoch. , 13 ( 2009 ), pp. 381 -- 401 .
4. , The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function , Probab. Theory Related Fields , 104 ( 1996 ), pp. 43 -- 60 .
5. , The law of the Euler scheme for stochastic differential equations: II. Convergence rate of the density , Monte Carlo Methods Appl. , 2 ( 1996 ), pp. 93 -- 128 .
6. , First Time to Exit of a Continuous Itô Process: General Moment Estimates and $L_1$-Convergence Rate for Discrete Time Approximations, preprint, arXiv:1307.4247 , 2013 .
7. ,
A Practical Guide to Splines , Appl. Math. Sci. 27 , Springer , Berlin , 1978 .8. ,
Improved multilevel Monte Carlo convergence using the Milstein scheme , in Monte Carlo and Quasi-Monte Carlo Methods 2006 , A. Keller, S. Heinrich, and H. Niederreiter, eds., Springer , Berlin, 2008, pp. 343 -- 358 .9. Carlo path simulation , Oper. Res. , 56 ( 2008 ), pp. 607 -- 617 .
10. , Numerical Analysis of Multilevel Monte Carlo Path Simulation Using the Milstein Discretisation, preprint, arXiv:1302.4676 , 2013 .
11. , Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff , Finance Stoch. , 13 ( 2009 ), pp. 403 -- 413 .
12. , Sharp estimates for the convergence of the density of the Euler scheme in small time , Elect. Comm. Probab. , 13 ( 2008 ), pp. 352 -- 363 .
13. , Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme , Stochastic Process. Appl. , 112 ( 2004 ), pp. 201 -- 223 .
14. Carlo complexity of global solution of integral equations , J. Complexity , 14 ( 1998 ), pp. 151 -- 175 .
15. , Mean exit times and the multi-level Monte Carlo method , SIAM/ASA J. Uncertainty Quantification , 1 ( 2013 ), pp. 2 -- 18 .
16. , Asymptotic error distributions for the Euler method for stochastic differential equations , Ann. Probab. , 26 ( 1998 ), pp. 267 -- 307 .
17. : A new variance reduction method and applications to options pricing , Ann. Appl. Probab. , 14 ( 2005 ), pp. 2681 -- 2705 .
18. , An optimal control variance reduction method for density estimation , Stochastic Process. Appl. , 118 ( 2008 ), pp. 2143 -- 2180 .
19. , The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality , Ann. Probab. , 18 ( 1990 ), pp. 1269 -- 1283 .
20. , Transition density estimation for stochastic differential equations via forward-reverse representations , Bernoulli , 10 ( 2004 ), pp. 281 -- 312 .
21.
T . Müller-Gronbach, The optimal uniform approximation of systems of stochastic differential equations , Ann. Appl. Probab. , 12 ( 2002 ), pp. 664 -- 690 .22. , Stochastic Calculus for Finance II: Continuous-Time Models , Springer-Verlag , New York , 2004 .
23. , Approximation of quantiles of components of diffusion processes , Stochastic Process. Appl. , 109 ( 2004 ), pp. 23 -- 46 .
24. , Introduction to Nonparametric Estimation , Springer , Berlin , 2009 .