Abstract

We analyze coherent structures in nonlocal dispersive active-dissipative nonlinear systems, using as a prototype the Kuramoto--Sivashinsky (KS) equation with an additional nonlocal term that contains stabilizing/destabilizing and dispersive parts. As for the local generalized Kuramoto--Sivashinsky (gKS) equation (see, e.g., [T. Kawahara and S. Toh, Phys. Fluids, 31 (1988), pp. 2103--2111]), we show that sufficiently strong dispersion regularizes the chaotic dynamics of the KS equation, and the solutions evolve into arrays of interacting pulses that can form bound states. We analyze the asymptotic characteristics of such pulses and show that their tails tend to zero algebraically but not exponentially, as for the local gKS equation. Since the Shilnikov-type approach is not applicable for analyzing bound states in nonlocal equations, we develop a weak-interaction theory and show that the standard first-neighbor approximation is no longer applicable. It is then essential to take into account long-range interactions due to the algebraic decay of the tails of the pulses. In addition, we find that the number of possible bound states for fixed parameter values is always finite, and we determine when there is long-range attractive or repulsive force between the pulses. Finally, we explain the regularizing effect of dispersion by showing that, as dispersion is increased, the pulses generally undergo a transition from absolute to convective instability. We also find that for some nonlocal operators, increasing the strength of the stabilizing/destabilizing term can have a regularizing/deregularizing effect on the dynamics.

Keywords

  1. nonlocal partial differential equations
  2. coherent-structure theory
  3. solitary pulses

MSC codes

  1. 00A69
  2. 35B41
  3. 35Q53
  4. 35R10
  5. 37L15
  6. 65P40
  7. 76D33

Formats available

You can view the full content in the following formats:

References

1.
L. Abdelouhab, J. L. Bona, M. Felland, and J.-C. Saut, Nonlocal models for nonlinear dispersive waves, Phys. D, 40 (1989), pp. 360--392.
2.
G. Akrivis, D. T. Papageorgiou, and Y.-S. Smyrlis, Computational study of the dispersively modified Kuramoto--Sivashinsky equation, SIAM J. Sci. Comput., 34 (2012), pp. A792--A813.
3.
G. Akrivis, D. T. Papageorgiou, and Y.-S. Smyrlis, On the analyticity of certain dissipative--dispersive systems, Bull. Lond. Math. Soc., 45 (2013), pp. 52--60.
4.
N. J. Armstrong, K. J. Painter, and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), pp. 98--113.
5.
N. J. Balmforth, Solitary waves and homoclinic orbits, Annu. Rev. Fluid Mech., 27 (1995), pp. 335--373.
6.
B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto--Sivashinsky equation, Phys. D, 258 (2013), pp. 11--46.
7.
A. P. Bassom, M. G. Blyth, and D. T. Papageorgiou, Nonlinear development of two--layer Couette--Poiseuille flow in the presence of surfactant, Phys. Fluids, 22 (2010), 102102.
8.
T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), pp. 559--592.
9.
H. C. Chang and E. A. Demekhin, Complex Wave Dynamics on Thin Films, Elsevier, New York, 2002.
10.
H.-C. Chang, E. A. Demekhin, and D. I. Kopelevich, Stability of a solitary pulse against wave packet disturbances in an active medium, Phys. Rev. Lett., 75 (1995), pp. 1747--1750.
11.
H.-C. Chang, E. A. Demekhin, and D. I. Kopelevich, Local stability theory of solitary pulses in an active medium, Phys. D, 97 (1996), pp. 353--375
12.
M. Chugunova and D. Pelinovsky, Two-pulse solutions in the fifth-order KDV equation: Rigorous theory and numerical approximations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 773--800.
13.
E. B. Davies, Linear Operators and Their Spectra, Cambridge Stud. Adv. Math. 106, Cambridge University Press, Cambridge, UK, 2007.
14.
A. Diddens and S. J. Linz, Redeposition during ion-beam erosion can stabilize well-ordered nanostructures, Europhys. Lett., 104 (2013), 17010.
15.
E. J. Doedel and B. E. Oldeman, AUTO07p: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical report, Concordia University, Montreal, 2012.
16.
C. Duprat, F. Giorgiutti-Dauphiné, D. Tseluiko, S. Saprykin, and S. Kalliadasis, Liquid film coating a fiber as a model system for the formation of bound states in active dispersive--dissipative nonlinear media, Phys. Rev. Lett., 103 (2009), 234501.
17.
A. S. Fokas and D. T. Papageorgiou, Absolute and convective instability for evolution PDEs on the half-line, Stud. Appl. Math., 114 (2005), pp. 95--114.
18.
U. Frisch, Z.-S. She, and O. Thual, Viscoelastic behaviour of cellular solutions to the Kuramoto--Sivashinsky model, J. Fluid Mech., 168 (1986), pp. 221--240.
19.
P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits, J. Statist. Phys., 35 (1984), pp. 645--696.
20.
J. A. González, S. Jiménez, A. Bellorin, L. E. Guerrero, and L. Vázquez, Internal degrees of freedom, long-range interactions and nonlocal effects in perturbed Klein--Gordon equations, Phys. A, 391 (2012), pp. 515--527.
21.
G. M. Homsy, Model equations for wavy viscous film flow, in Nonlinear Wave Motion, Lectures Appl. Math. 15, American Mathematical Society, Providence, RI, 1974, pp. 191--194.
22.
P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22 (1990), pp. 473--537.
23.
R. S. Johnson, Shallow water waves on a viscous fluid---the undular bore, Phys. Fluids, 15 (1972), pp. 1693--1699.
24.
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, UK, 1997.
25.
S. Kalliadasis, E. A. Demekhin, C. Ruyer-Quil, and M. G. Velarde, Thermocapillary instability and wave formation on a film falling down a uniformly heated plane, J. Fluid Mech., 492 (2003), pp. 303--338.
26.
S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films, Springer Ser. Appl. Math. Sci., Springer, London, 2012.
27.
Q. D. Katatbeh and P. J. Torres, Existence of periodic and solitary waves for a nonlinear Schrödinger equation with nonlocal integral term of convolution type, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), pp. 1136--1142.
28.
T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation, Phys. Rev. Lett., 51 (1983), pp. 381--383.
29.
T. Kawahara and S. Toh, Pulse interactions in an unstable dissipative-dispersive nonlinear system, Phys. Fluids, 31 (1988), pp. 2103--2111.
30.
Y. Kuramoto, Diffusion-induced chaos in reaction systems, Prog. Theor. Phys. Suppl., 64 (1978), pp. 346--367.
31.
M. J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions, Cambridge University Press, Cambridge, UK, 1958.
32.
S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), pp. 417--429.
33.
T.-S. Lin, D. Tseluiko, and S. Kalliadasis, Numerical study of a non-local weakly nonlinear model for a liquid film sheared by a turbulent gas, Procedia IUTAM, 11 (2014), pp. 98--109.
34.
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1--77.
35.
J. W. Miles, Korteweg--de Vries equation modified by viscosity, Phys. Fluids, 19 (1976), p. 1063.
36.
A. A. Nepomnyashchy, Stability of wave regimes in a film flowing down an inclined plane, Fluid Dyn., 9 (1974), pp. 354--359.
37.
M. Nicoli, R. Cuerno, and M. Castro, Unstable nonlocal interface dynamics, Phys. Rev. Lett., 102 (2009), 256102.
38.
D. T. Papageorgiou, C. Maldarelli, and D. S. Rumschitzki, Nonlinear interfacial stability of core-annular film flows, Phys. Fluids A, 2 (1990), pp. 340--352.
39.
M. Pradas, S. Kalliadasis, P.-K. Nguyen, and V. Bontozoglou, Bound-state formation in interfacial turbulence: Direct numerical simulations and theory, J. Fluid Mech., 716 (2013), R2.
40.
M. Pradas, S. Kalliadasis, and D. Tseluiko, Binary interactions of solitary pulses in falling liquid films, IMA J. Appl. Math., 77 (2012), pp. 408--419.
41.
M. Pradas, D. Tseluiko, and S. Kalliadasis, Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization, Phys. Fluids, 23 (2011), 044104.
42.
M. Pradas, D. Tseluiko, C. Ruyer-Quil, and S. Kalliadasis, Pulse dynamics in a power-law falling film, J. Fluid Mech., 747 (2014), pp. 460--480.
43.
C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, Long-range interactions between optical solitons, Nature Phys., 2 (2006), pp. 769--774.
44.
B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. D, 145 (2000), pp. 233--277.
45.
D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky, and S. Lovejoy, Fractional Fokker--Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Levy stable noises, J. Math. Phys., 42 (2001), pp. 200--212.
46.
E. Simbawa, P. C. Matthews, and S. M. Cox, Nikolaevskiy equation with dispersion, Phys. Rev. E, 81 (2010), 036220.
47.
G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronaut., 4 (1977), pp. 1177--1206.
48.
R. Smith, Nonlinear Kelvin and continental--shelf waves, J. Fluid Mech., 52 (1972), pp. 379--391.
49.
Y.-S. Smyrlis and D. T. Papageorgiou, The effects of generalized dispersion on dissipative dynamical systems, Appl. Math. Lett., 11 (1998), pp. 93--99.
50.
D. Tseluiko and S. Kalliadasis, Nonlinear waves in counter-current gas--liquid film flow, J. Fluid Mech., 673 (2011), pp. 19--59.
51.
D. Tseluiko and S. Kalliadasis, Weak interaction of solitary pulses in active dispersive--dissipative nonlinear media, IMA J. Appl. Math., 79 (2014), pp. 274--299.
52.
D. Tseluiko and D. T. Papageorgiou, A global attracting set for nonlocal Kuramoto--Sivashinsky equations arising in interfacial electrohydrodynamics, European J. Appl. Math., 17 (2006), pp. 677--703.
53.
D. Tseluiko and D. T. Papageorgiou, Wave evolution on electrified falling films, J. Fluid Mech., 556 (2006), pp. 361--386.
54.
D. Tseluiko and D. T. Papageorgiou, Dynamics of an electrostatically modified Kuramoto--Sivashinsky--Korteweg--de Vries equation arising in falling film flows, Phys. Rev. E (3), 82 (2010), 016322.
55.
D. Tseluiko, S. Saprykin, C. Duprat, F. Giorgiutti-Dauphiné, and S. Kalliadasis, Pulse dynamics in low-Reynolds-number interfacial hydrodynamics: Experiments and theory, Phys. D, 239 (2010), pp. 2000--2010.
56.
D. Tseluiko, S. Saprykin, and S. Kalliadasis, Interaction of solitary pulses in active dispersive--dissipative media, Proc. Est. Acad. Sci., 59 (2010), pp. 139--144.
57.
M. G. Velarde, Solitons as dissipative structures, Int. J. Quantum Chem., 98 (2004), p. 272--280.
58.
R. Vellingiri, D. Tseluiko, N. Savva, and S. Kalliadasis, Dynamics of a liquid film sheared by a co-flowing turbulent gas, Int. J. Multiphase Flow, 56 (2013), pp. 93--104.
59.
G. Z. Voyiadjis and R. K. Abu Al-Rub, Nonlocal gradient-dependent thermodynamics for modeling scale-dependent plasticity, Int. J. Mul. Comp. Eng., 5 (2007), pp. 295--323.
60.
H.-H. Wei, Shear-flow and thermocapillary interfacial instabilities in a two-layer viscous flow, Phys. Fluids, 18 (2006), 064109.
61.
G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 538 - 563
ISSN (online): 1095-712X

History

Submitted: 22 May 2014
Accepted: 20 January 2015
Published online: 19 March 2015

Keywords

  1. nonlocal partial differential equations
  2. coherent-structure theory
  3. solitary pulses

MSC codes

  1. 00A69
  2. 35B41
  3. 35Q53
  4. 35R10
  5. 37L15
  6. 65P40
  7. 76D33

Authors

Affiliations

Demetrios T. Papageorgiou

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media