Abstract

In this paper we illustrate the potential role which relative limit cycles may play in biolocomotion. We do this by describing, in great detail, an elementary example of reduction of a lightly dissipative system modeling crawling-type locomotion in three dimensions. The symmetry group SE(2) is the set of rigid transformations of the horizontal (ground) plane. Given a time-periodic perturbation, the system will admit a relative limit cycle whereupon each period is related to the previous by a fixed translation and rotation along the ground. This toy model identifies how symmetry reduction and dissipation can conspire to create robust behavior in crawling, and possibly walking, locomotion. (An erratum is attached.)

MSC codes

  1. symmetry
  2. relative periodic orbits
  3. biomechanics
  4. geometric mechanics

MSC codes

  1. 37D99
  2. 37C20
  3. 37C27
  4. 37J15
  5. 70Q05
  6. 92C10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., AMS, Providence, RI, 2000.
2.
R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, tensor analysis, and applications, 3rd ed., Appl. Math. Sci. 75, Springer, Berlin, 2009.
3.
A. Ames, A Categorical Theory of Hybrid Systems, Ph.D. thesis, University of California Berkeley, Berkeley, CA, 2006.
4.
A. D. Ames and S. Sastry, Hybrid cotangent bundle reduction of simple hybrid mechanical systems with symmetry, in Proceedings of the American Control Conference, 2006, pp. 2646--2651.
5.
A. M. Bloch, J. E. Marsden, and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dyn. Syst., 24 (2009), pp. 187--222.
6.
V. N. Brendelev, On the realization of constraints in nonholonomic mechanics, J. Appl. Math. Mech., 45 (1981), pp. 481--487.
7.
S. Burden, S. Revzen, and S. S. Sastry, Dimension reduction near periodic orbits of hybrid systems, in Proceedings of the IEEE Conference on Decision and Control, 2011.
8.
H. Cendra, J. E. Marsden, and T. S. Ratiu, Lagrangian Reduction by Stages, Mem. Amer. Math. Soc. 152, AMS, Providence, RI, 2001.
9.
D. E. Chang and S. Jeon, On the damping-induced self-recovery phenomenon in mechanical systems with several unactuated cyclic variables, J. Nonlinear Sci., 23 (2013), pp. 1023--1038.
10.
R. Cushman, H. Duistermaat, and J. Śniatycki, Geometry of Nonholonomically Constrained Systems, Adv. Ser. Nonlinear Dyn. 26, World Scientific, Hackensack, NJ, 2010.
11.
J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer, Berlin, 2000.
12.
J. Eldering, Normally Hyperbolic Invariant Manifolds---The Noncompact Case, Atlantis Stud. Math. 2, Springer, Berlin, 2013.
13.
N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/1972), pp. 193--226.
14.
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53--98.
15.
M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, The simplest walking model: Stability, complexity, and scaling, J. Biomech. Eng., 120 (1998), pp. 281--288.
16.
A. Goswami, B. Thuilot, and B. Espiau, A study of the passive gait of a compass-like biped robot: Symmetry and chaos, Int. J. Robot. Res., 17 (1998), pp. 1282--1301.
17.
R. D. Gregg and L. Righetti, Controlled reduction with unactuated cyclic variables: Application to 3D bipedal walking with passive yaw rotation, IEEE Trans. Automat. Control, 58 (2013), pp. 2679--2685.
18.
S. Grillner and P. Wallen, Central pattern generators for locomotion, with special reference to vertebrates, Annu. Rev. Neurosci., 8 (1985), pp. 233--261.
19.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 2nd ed., Springer, Berlin, 1983.
20.
R. L. Hatton, Y. Ding, H. Choset, and D. I. Goldman, Geometric visualization of self-propulsion in a complex medium, Phys. Rev. Lett., 110 (2013), 078101.
21.
M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, Berlin, 1977.
22.
C. K. R. T. Jones, Geometric singular perturbation theory, Dynamical Systems, Lecture Notes in Math. 1609, Springer, Berlin, 1995, pp. 44--118.
23.
E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid, J. Nonlinear Sci., 15 (2005), pp. 255--289.
24.
T. J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proc. Sympos. Appl. Math. 56, AMS, Providence, RI, 1999, pp. 85--131.
25.
A. V. Karapetian, On realizing nonholonomic constraints by viscous friction forces and celtic stones stability, J. Appl. Math. Mech., 45 (1981), pp. 30--36.
26.
S. D. Kelly and R. M. Murray, Modelling efficient pisciform swimming for control, Internat. J. Robust Nonlinear Control, 10 (2000), pp. 217--241.
27.
S. D. Kelly and R. M. Murray, The geometry and control of dissipative systems, in Proceedings of the 35th IEEE Conference on Decision and Control, 1996, pp. 981--986.
28.
J. Koiller, Problems and progress in microswimming, J. Nonlinear Sci., 6 (1996), pp. 507--541.
29.
J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), pp. 121--130.
30.
J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. Angew. Math. Phys., 44 (1993), pp. 17--43 (in English).
31.
T. McGeer, Passive dynamic walking, Internat. J. Robot., 9 (1990), pp. 62--82.
32.
R. Montgomery, Isoholonomic problems and some applications, Comm. Math. Phys., 128 (1990), pp. 565--592.
33.
R. Montgomery, Gauge theory of the falling cat, Dynamics and Control of Mechanical Systems, Vol. 1, AMS, Providence, RI, 1993, pp. 193--218.
34.
J. Ostrowski, A. Lewis, R. Murray, and J. Burdick, Nonholonomic mechanics and locomotion: The snakeboard example, in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, Vol. 3, 1994, pp. 2391--2397.
35.
E. M. Purcell, Life at low reynolds number, Amer. J. Phys., 45 (1977), pp. 3--11.
36.
M. H. Raibert, Running with symmetry, Internat. J. Robot. Res., 5 (1986), pp. 3--19.
37.
M. H. Raibert, Symmetry in running, Science, 231 (1986), pp. 1292--1294.
38.
H. Rubin and P. Ungar, Motion under a strong constraining force, Comm. Pure Appl. Math., 10 (1957), pp. 65--87.
39.
A. Shapere and F. Wilczek, Geometry of self-propulsion at low reynolds number, J. Fluid Mech., 198 (1989), pp. 557--585.
40.
F. Takens, Motion under the influence of a strong constraining force, in Proceedings of the Global Theory of Dynamical Systems, Northwestern University, Evanston, IL, 1979, Lecture Notes in Math. 819, Springer, Berlin, 1980, pp. 425--445.
41.
F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235--286.
42.
B. W. Verdaasdonk, H. F. J. M. Koopman, and F. C. T. van der Helm, Energy efficient walking with central pattern generators: From passive dynamic walking to biologically inspired control, Biol. Cybernet., 101 (2009), pp. 49--61.
43.
E. Vouga, D. Harmon, R. Tamstorf, and E. Grinspun, Asynchronous variational contact mechanics, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 2181--2194.
44.
G. L. Wagner and E. Lauga, Crawling scallop: Friction-based locomotion with one degree of freedom, J. Theoret. Biol., 324 (2013), pp. 42--51.
45.
A. Weinstein, Lagrangian mechanics and groupoids, Mechanics Day, Fields Inst. Commun. 7, AMS, Providence, RI, 1996, pp. 207--231.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 24 - 59
ISSN (online): 1536-0040

History

Submitted: 29 May 2014
Accepted: 12 November 2015
Published online: 20 January 2016

MSC codes

  1. symmetry
  2. relative periodic orbits
  3. biomechanics
  4. geometric mechanics

MSC codes

  1. 37D99
  2. 37C20
  3. 37C27
  4. 37J15
  5. 70Q05
  6. 92C10

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media