The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.


  1. Mittag-Leffler function
  2. Laplace transform
  3. trapezoidal rule
  4. fractional calculus
  5. Prabhakar function
  6. special function

MSC codes

  1. 33E12
  2. 44A10
  3. 65D30
  4. 33F05
  5. 26A33

Get full access to this article

View all available purchase options and get full access to this article.


M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. Reine Angew. Math., 218 (1965), pp. 70--78.
J. C. Butcher, On the numerical inversion of Laplace and Mellin transforms, in Proceedings of the Conference on Data Processing and Automatic Computing Machines, Salisbury, Australia, 1957.
E. Capelas de Oliveira, F. Mainardi, and J. Vaz, Jr., Models based on Mittag--Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics, 193 (2011), pp. 161--171.
M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1 (1971), pp. 161--198.
M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Fract. Calc. Appl. Anal., 10 (2007), pp. 309--324; reprinted from Pure Appl. Geophys., 9 (1971), pp. 134--147.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Comput. Sci. Appl. Math., Academic Press Inc., Orlando, FL, 1984.
B. Dingfelder and J. A. C. Weideman, An improved Talbot method for numerical Laplace transform inversion, Numer. Algorithms, 68 (2015), pp. 167--183.
M. M. Džrbašjan and A. B. Nersesjan, Fractional derivatives and the Cauchy problem for differential equations of fractional order, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 3 (1968), pp. 3--29.
C. Fox, The asymptotic expansion of integral functions defined by generalized hypergeometric functionss, Proc. London Math. Soc., 27 (1928), pp. 389--400.
R. Garrappa, The Mittag--Leffler function, MATLAB Central File Exchange, 2014, file ID: 48154.
R. Garrappa, I. Moret, and M. Popolizio, Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys., 293 (2015), pp. 115--134.
R. Garrappa and M. Popolizio, Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl., 62 (2011), pp. 876--890.
R. Garrappa and M. Popolizio, Evaluation of generalized Mittag--Leffler functions on the real line, Adv. Comput. Math., 39 (2013), pp. 205--225.
I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal., 43 (2005), pp. 2144--2171.
R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler functions, Related Topics and Applications, Springer Monogr. Math., Springer, Heidelberg, 2014.
R. Gorenflo, J. Loutchko, and Y. Luchko, Computation of the Mittag-Leffler function $E_{\alpha,\beta}(z)$ and its derivative, Fract. Calc. Appl. Anal., 5 (2002), pp. 491--518.
H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., (2011), 298628.
R. Hilfer and H. J. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct., 17 (2006), pp. 637--652.
E. Hille and J. D. Tamarkin, On the theory of linear integral equations, Ann. of Math. (2), 31 (1930), pp. 479--528.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science B.V., Amsterdam, 2006.
M. López-Fernández, C. Palencia, and A. Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal., 44 (2006), pp. 1332--1350.
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), pp. 283--299.
M. G. Mittag-Leffler, Sur l'intégrale de Laplace-Abel, C. R. Acad. Sci. Paris (Ser. II), 136 (1902), pp. 937--939.
M. G. Mittag-Leffler, Sopra la funzione ${E}_{\alpha}(x)$, Rend. Accad. Lincei, 13 (1904), pp. 3--5.
I. Moret, A note on Krylov methods for fractional evolution problems, Numer. Funct. Anal. Optim., 34 (2013), pp. 539--556.
I. Moret and P. Novati, On the convergence of Krylov subspace methods for matrix Mittag--Leffler functions, SIAM J. Numer. Anal., 49 (2011), pp. 2144--2164.
A. Murli and M. Rizzardi, Algorithm 682: Talbot's method of the Laplace inversion problems, ACM Trans. Math. Software, 16 (1990), pp. 158--168.
I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Engrg. 198, Academic Press Inc., San Diego, CA, 1999.
I. Podlubny and M. Kacenak, The MATLAB MLF Code, MATLAB Central File Exchange, 2001--2012, file ID: 8738.
T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), pp. 7--15.
H. Seybold and R. Hilfer, Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J. Numer. Anal., 47 (2008), pp. 69--88.
D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23 (2003), pp. 269--299.
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23 (1979), pp. 97--120.
L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev., 56 (2014), pp. 385--458.
L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT, 46 (2006), pp. 653--670.
F. G. Tricomi, Funzioni ipergeometriche confluenti, Edizione Cremonese, Roma, 1954.
J. A. C. Weideman, Optimizing Talbot's contours for the inversion of the Laplace transform, SIAM J. Numer. Anal., 44 (2006), pp. 2342--2362.
J. A. C. Weideman, Improved contour integral methods for parabolic PDEs, IMA J. Numer. Anal., 30 (2010), pp. 334--350.
J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp., 76 (2007), pp. 1341--1356.
A. Wiman, Über den fundamentalsatz in der teorie der funktionen ${E}_{\alpha}(x)$, Acta Math., 29 (1905), pp. 191--201.
Wolfram Research Inc., Tricomi Confluent Hypergeometric Function, 1998--2010, http://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/.
E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., s-1-10 (1935), pp. 286--293.

Information & Authors


Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1350 - 1369
ISSN (online): 1095-7170


Submitted: 2 June 2014
Accepted: 16 March 2015
Published online: 26 May 2015


  1. Mittag-Leffler function
  2. Laplace transform
  3. trapezoidal rule
  4. fractional calculus
  5. Prabhakar function
  6. special function

MSC codes

  1. 33E12
  2. 44A10
  3. 65D30
  4. 33F05
  5. 26A33



Metrics & Citations



If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options


View PDF







Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.