Computational Methods in Science and Engineering

Edge-Enhancing Reconstruction Algorithm for Three-Dimensional Electrical Impedance Tomography

Abstract

Electrical impedance tomography is an imaging modality for extracting information on the conductivity distribution inside a physical body from boundary measurements of current and voltage. In many practical applications, it is a priori known that the conductivity consists of embedded inhomogeneities in an approximately constant background. This work introduces an iterative reconstruction algorithm that aims at finding the maximum a posteriori estimate for the conductivity assuming an edge-preferring prior. The method is based on applying (a single step of) priorconditioned lagged diffusivity iteration to sequential linearizations of the forward model. The algorithm is capable of producing reconstructions on dense unstructured three-dimensional finite element meshes and with a high number of measurement electrodes. The functionality of the proposed technique is demonstrated with both simulated and experimental data in the framework of the complete electrode model, which is the most accurate model for practical impedance tomography.

Keywords

  1. electrical impedance tomography
  2. priorconditioning
  3. edge-preferring regularization
  4. LSQR
  5. complete electrode model

MSC codes

  1. 65N21
  2. 35R30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Arridge, M. Betcke, and L. Harhanen, Iterated preconditioned LSQR method for inverse problems on unstructured grids, Inverse Problems, 30 (2014), 075009.
2.
J. Bikowski, K. Knudsen, and J. L. Mueller, Direct numerical reconstruction of conductivities in three dimensions using scattering transforms, Inverse Problems, 27 (2011), 015002.
3.
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), pp. R99--R136.
4.
A. Borsic, B. M. Graham, A. Adler, and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Trans. Med. Imaging, 29 (2010), pp. 44--54.
5.
W. L. Briggs, H. Van Emden, and S. F. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, 2000.
6.
D. Calvetti, Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective, J. Comput. Appl. Math., 198 (2007), pp. 378--395.
7.
D. Calvetti, D. McGivney, and E. Somersalo, Left and right preconditioning for electrical impedance tomography with structural information, Inverse Problems, 28 (2012), 055015.
8.
D. Calvetti and E. Somersalo, Priorconditioners for linear systems, Inverse Problems, 21 (2005), pp. 1397--1418.
9.
D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Springer, New York 2007.
10.
D. Calvetti and E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), 034013.
11.
N. Chaulet, S. Arridge, T. Betcke, and D. Holder, The factorization method for three dimensional electrical impedance tomography, Inverse Problems, 30 (2014), 045005.
12.
M. Cheney, D. Isaacson, and J. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), pp. 85--101.
13.
K.-S. Cheng, D. Isaacson, J. S. Newell, and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), pp. 918--924.
14.
E. T. Chung, T. F. Chan, and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phys., 205 (2005), pp. 357--372.
15.
J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous reconstruction of outer boundary shape and admittance distribution in electrical impedance tomography, SIAM J. Imaging Sci., 6 (2013), pp. 176--198.
16.
J. Dardé, N. Hyvönen, A. Seppänen, and S. Staboulis, Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation, Inverse Problems, 29 (2013), 085004.
17.
J. Dardé and S. Staboulis, Electrode Modelling: The Effect of Contact Impedance, arXiv:1312.4202, 2014.
18.
F. Delbary, P. C. Hansen, and K. Knudsen, Electrical impedance tomography: $3$D reconstructions using scattering transforms, Appl. Anal., 91 (2012), pp. 737--755.
19.
L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares problem, BIT, 22 (1982), pp. 487--502.
20.
H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, The Netherlands, 1996.
21.
M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio, and P. Maass, Sparsity reconstruction in electrical impedance tomography: An experimental evaluation, J. Comput. Appl. Math., 236 (2012), pp. 2126--2136.
22.
M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Chapman and Hall, London, 1995.
23.
M. Hanke, L. Harhanen, N. Hyvönen, and E. Schweickert, Convex source support in three dimensions, BIT, 52 (2012), pp. 45--63.
24.
P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
25.
B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), pp. 1505--1518.
26.
L. M. Heikkinen, T. Vilhunen, R. M. West, and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments, Meas. Sci. Technol., 13 (2002), pp. 1855--1861.
27.
J. W. Hilgers, On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems, SIAM J. Numer. Anal., 13 (1976), pp. 172--184.
28.
N. Hyvönen, A. Seppänen, and K. Karhunen, Fréchet derivative with respect to the shape of an internal electrode in electrical impedance tomography, SIAM J. Appl. Math., 70 (2010), pp. 1878--1898.
29.
J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Problems, 16 (2000), pp. 1487--1522.
30.
J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, New York, 2004.
31.
K. Karhunen, A. Lehikoinen, P. J. M. Monteiro, and J. P. Kaipio, Electrical resistance tomography imaging of concrete, Cement Concrete Res., 40 (2010), pp. 137--145.
32.
M. Kilmer, P. Hansen, and M. Espanol, A projection based approach to general form Tikhonov regularization, SIAM J. Sci. Comput., 29 (2007), pp. 315--330.
33.
V. Kolehmainen, E. Somersalo, P. J. Vauhkonen, M. Vauhkonen, and J. P. Kaipio, A Bayesian approach and total variation priors in $3$D electrical impedance tomography, in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, 1998, pp. 1028--1031.
34.
J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen, and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Meas. Sci. Technol., 20 (2009), 015503.
35.
C. C. Paige and M. A. Saunders, Algorithm 583: LSQR: Sparse linear equations and least squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195--209.
36.
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43--71.
37.
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal., 12 (1990), pp. 629--639.
38.
L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259--268.
39.
E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), pp. 1023--1040.
40.
O.-P. Tossavainen, M. Vauhkonen, and V. Kolehmainen, A three-dimensional shape estimation approach for tracking of phase interfaces in sedimentation processes using electrical impedance tomography, Meas. Sci. Technol., 18 (2007), pp. 1413--1424.
41.
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011.
42.
M. Vauhkonen, Electrical Impedance Tomography with Prior Information, Ph.D. dissertation, Kuopio University, 1997.
43.
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), pp. 1150--1160.
44.
T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen, and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory, Meas. Sci. Technol., 13 (2002), pp. 1848--1854.
45.
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227--238.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B60 - B78
ISSN (online): 1095-7197

History

Submitted: 5 June 2014
Accepted: 25 November 2014
Published online: 5 February 2015

Keywords

  1. electrical impedance tomography
  2. priorconditioning
  3. edge-preferring regularization
  4. LSQR
  5. complete electrode model

MSC codes

  1. 65N21
  2. 35R30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media