Abstract

We propose the use of the Kantorovich--Rubinstein norm from optimal transport in imaging problems. In particular, we discuss a variational regularization model endowed with a Kantorovich--Rubinstein discrepancy term and total variation regularization in the context of image denoising and cartoon-texture decomposition. We point out connections of this approach to several other recently proposed methods such as total generalized variation and norms capturing oscillating patterns. We also show that the respective optimization problem can be turned into a convex-concave saddle point problem with simple constraints and hence can be solved by standard tools. Numerical examples exhibit interesting features and favorable performance for denoising and cartoon-texture decomposition.

Keywords

  1. variational imaging
  2. optimal transport
  3. Kantorovich--Rubinstein distance
  4. total variation
  5. denoising
  6. image decomposition

MSC codes

  1. 49Q20
  2. 94A08
  3. 90B06

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. 254. Clarendon Press, Oxford, UL, 2000.
2.
L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
3.
H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces, in Aspects of Mathematics and Its Applications, J. A. Barroso, ed., North-Holland Mathematical Library 34, Elsevier, New York, 1986, pp. 125--133.
4.
J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, Structure-texture image decomposition---Modeling, algorithms, and parameter selection, Int. J. Comput. Vis., 67 (2006), pp. 111--136.
5.
V. I. Bogachev, Measure Theory, Springer-Verlag, Berlin, 2007.
6.
D. M. Boyer, Y. Lipman, E. St. Clair, J. Puente, B. A. Patel, T. Funkhouser, J. Jernvall, and I. Daubechies, Algorithms to automatically quantify the geometric similarity of anatomical surfaces, Proc. Natl. Acad. Sci., 108 (2011), pp. 18221--18226.
7.
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492--526.
8.
K. Bredies, K. Kunisch, and T. Valkonen, Properties of $L^1$-$TGV^2$: The one-dimensional case, J. Math. Anal. Appl., 398 (2013), pp. 438--454.
9.
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, in Proceedings of the 9th International Conference on Sampling Theory and Applications (SampTA), Singapore, 2011.
10.
J. M. Bunn, D. M. Boyer, Y. Lipman, E. St. Clair, J. Jernvall, and I. Daubechies, Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination, Amer. J. Phys. Anthropology, 145 (2011), pp. 247--261.
11.
M. Burger, M. Franek, and C.-B. Schönlieb, Regularized regression and density estimation based on optimal transport, Appl. Math. Res. Express., AMRX, 2012 (2012), pp. 209--253.
12.
G. Buttazzo and F. Santambrogio, A model for the optimal planning of an urban area, SIAM J. Math. Anal., 37 (2005), pp. 514--530.
13.
V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6 (2007), pp. 879--894.
14.
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120--145.
15.
T. F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817--1837.
16.
T. F. Chan, S. Esedoglu, and K. Ni, Histogram based segmentation using Wasserstein distances, in Scale Space and Variational Methods in Computer Vision, Springer, New York, 2007, pp. 697--708.
17.
L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem, Calc. Var. Partial Differential Equations, 14 (2002), pp. 249--274.
18.
V. Duval, J.-F. Aujol, and Y. Gousseau, The TVL$1$ model: A geometric point of view, Multiscale Model. Simul., 8 (2009), pp. 154--189.
19.
V. Duval, J.-F. Aujol, and L. Vese, Mathematical modeling of textures: Application to color image decomposition with a projected gradient algorithm, J. Math. Imaging Vision, 37 (2010), pp. 232--248.
20.
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, SIAM, Philadelphia, 1999.
21.
H. Federer, Geometric Measure Theory, Springer, New York, 1969.
22.
S. Ferradans, N. Papadakis, J. Rabin, G. Peyré, and J.-F. Aujol, Regularized discrete optimal transport, in Scale Space and Variational Methods in Computer Vision, Springer, New York, 2013, pp. 428--439.
23.
T. Goldstein, E. Esser, and R. Baraniuk, Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems, preprint, arXiv:1305.0546, 2013.
24.
M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lecture Notes in Control and Inform. Sci. 371, Springer, New York, 2008, pp. 95--110; also available online from http://stanford.edu/ boyd/graph_dcp.html.
25.
M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx(2014).
26.
K. Grauman and T. Darrell, Fast contour matching using approximate earth mover's distance, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE, 2004, pp. I--220.
27.
S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, Optimal mass transport for registration and warping, Int. J. Comput. Vis., 60 (2004), pp. 225--240.
28.
L. V. Kantorovič, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.), 37 (1942), pp. 199--201.
29.
L. V. Kantorovič and G. Š. Rubinšteĭn, On a functional space and certain extremum problems, Dokl. Akad. Nauk SSSR, 115 (1957), pp. 1058--1061.
30.
S. Kindermann, S. Osher, and J. Xu, Denoising by BV-duality, J. Sci. Comput., 28 (2006), pp. 411--444.
31.
H. Ling and K. Okada, An efficient earth mover's distance algorithm for robust histogram comparison, IEEE Trans. Pattern Anal. Machine Intelligence, 29 (2007), pp. 840--853.
32.
Y. Lipman and I. Daubechies, Conformal Wasserstein distances: Comparing surfaces in polynomial time, Adv. Math., 227 (2011), pp. 1047--1077.
33.
Y. Lipman, J. Puente, and I. Daubechies, Conformal Wasserstein distance: II. Computational aspects and extensions, Math. Comput., 82 (2013), pp. 331--381.
34.
D. A. Lorenz and T. Pock, An inertial forward-backward method for monotone inclusions, J. Math. Imaging Vision, to appear.
35.
P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge University Press, Cambridge, UK, 1999.
36.
F. Mémoli, On the use of Gromov-Hausdorff distances for shape comparison, in Proceedings of the Eurographics Symposium on Point-Based Graphics, Eurographics Association, 2007, pp. 81--90.
37.
F. Mémoli, Gromov-Hausdorff distances in Euclidean spaces, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, pp. 1--8.
38.
F. Mémoli, Spectral Gromov-Wasserstein distances for shape matching, in Proceedings of the IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, pp. 256--263.
39.
F. Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math., 11 (2011), pp. 417--487.
40.
F. Mémoli, A spectral notion of Gromov-Wasserstein distance and related methods, Appl. Comput. Harmon. Anal., 30 (2011), pp. 363--401.
41.
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, AMS, Providence, RI, 2001.
42.
G. O. Mohler, A. L. Bertozzi, T. A. Goldstein, and S. J. Osher, Fast TV regularization for $2$D maximum penalized likelihood estimation, J. Comput. Graph. Statist., 20 (2011), pp. 479--491.
43.
F. Morgan, Geometric Measure Theory: A Beginner's Guide, Academic Press, New York 1987.
44.
K. Ni, X. Bresson, T. F. Chan, and S. Esedoglu, Local histogram based segmentation using the Wasserstein distance, Int. J. Comput. Vis., 84 (2009), pp. 97--111.
45.
L. Oudre, J. Jakubowicz, P. Bianchi, and C. Simon, Classification of periodic activities using the Wasserstein distance, IEEE Trans. Biomedical Engrg., 59 (2012), pp. 1610--1619.
46.
N. Papadakis, G. Peyré, and E. Oudet, Optimal transport with proximal splitting, SIAM J. Imaging Sci., 7 (2014), pp. 212--238.
47.
K. Papafitsoros and K. Bredies, A Study of the One Dimensional Total Generalised Variation Regularisation Problem, preprint, arXiv:1309.5900, 2013.
48.
G. Peyré, J. Fadili, and J. Rabin, Wasserstein active contours, in Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), 2012, pp. 2541--2544.
49.
C. Pöschl and O. Scherzer, Exact Solutions of One-Dimensional TGV, preprint, arXiv:1309.7152, 2013.
50.
J. Rabin and G. Peyré, Wasserstein regularization of imaging problems, in Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), 2011, pp. 1541--1544.
51.
J. Rabin, G. Peyré, and L. D. Cohen, Geodesic shape retrieval via optimal mass transport, in Proceedings of the Computer Vision--ECCV 2010, Springer, 2010, pp. 771--784.
52.
J. Rabin, G. Peyré, J. Delon, and M. Bernot, Wasserstein barycenter and its application to texture mixing, in Scale Space and Variational Methods in Computer Vision, Springer, New York, 2012, pp. 435--446.
53.
S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, Volume I: Probab. Appli. (N.Y.), Springer-Verlag, New York, 1998.
54.
Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, Int. J. Comput. Vis., 40 (2000), pp. 99--121.
55.
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, Variational Methods in Imaging, Appl. Math. Ser. 167, Springer, New York, 2008.
56.
B. Schmitzer and C. Schnörr, Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, J. Math. Imaging Vision, 46 (2013), pp. 143--159.
57.
B. Schmitzer and C. Schnörr, Object segmentation by shape matching with Wasserstein modes, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, New York, 2013, pp. 123--136.
58.
D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), pp. S165--S187.
59.
P. Swoboda and C. Schnörr, Convex variational image restoration with histogram priors, SIAM J. Imag. Sci., 6 (2013), pp. 1719--1735.
60.
T. Valkonen, The Jump Set Under Geometric Regularisation. Part 1: Basic Technique and First-Order Denoising, preprint, arXiv:1407.1531, 2014.
61.
T. Valkonen, The Jump Set Under Geometric Regularisation. Part 2: Higher-order approaches, preprint, arXiv:1407.2334, 2014.
62.
L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), pp. 553--572.
63.
C. Villani, Optimal Transport: Old and New, Grundlehren Math. Wiss. 388, Springer-Verlag, Berlin, 2009.
64.
W. Wang, J. A. Ozolek, D. Slepcev, A. B. Lee, C. Chen, and G. K. Rohde, An optimal transportation approach for nuclear structure-based pathology, IEEE Trans. Medical Imaging, 30 (2011), pp. 621--631.
65.
W. Yin, D. Goldfarb, and S. Osher, A comparison of three total variation based texture extraction models, J. Visual Comm. Image Representation, 18 (2007), pp. 240--252.
66.
L. Zhu, Y. Yang, S. Haker, and A. Tannenbaum, An image morphing technique based on optimal mass preserving mapping, IEEE Trans. Image Process., 16 (2007), pp. 1481--1495.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 2833 - 2859
ISSN (online): 1936-4954

History

Submitted: 1 July 2014
Accepted: 2 October 2014
Published online: 18 December 2014

Keywords

  1. variational imaging
  2. optimal transport
  3. Kantorovich--Rubinstein distance
  4. total variation
  5. denoising
  6. image decomposition

MSC codes

  1. 49Q20
  2. 94A08
  3. 90B06

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media