Abstract

We propose dual-domain filtering, an image processing paradigm that couples spatial domain with frequency domain filtering. Our dual-domain defined filter removes artifacts like residual noise of other image denoising methods and compression artifacts. Moreover, iterating the filter achieves state-of-the-art image denoising results, but with a much simpler algorithm than competing approaches. The simplicity and versatility of the dual-domain filter makes it an attractive tool for image processing.

Keywords

  1. image denoising
  2. robust statistics
  3. bilateral filter
  4. Fourier transform

MSC codes

  1. 68U10
  2. 94A08
  3. 60G35
  4. 65T50

Formats available

You can view the full content in the following formats:

References

1.
N. Azzabou, N. Paragios, and F. Guichard, Image denoising based on adapted dictionary computation, in Proceedings of the IEEE International Conference on Image Processing (ICIP 2007), IEEE, Piscataway, NJ, 2007, Vol. 3, pp. III-109--III-112.
2.
P. Bouboulis, K. Slavakis, and S. Theodoridis, Adaptive kernel-based image denoising employing semi-parametric regularization, IEEE Trans. Image Process., 19 (2010), pp. 1465--1479.
3.
A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490--530.
4.
H. C. Burger, C. J. Schuler, and S. Harmeling, Image denoising: Can plain neural networks compete with BM3D?, in Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Piscataway, NJ, 2012, pp. 2392--2399.
5.
L. Caraffa, J.-P. Tarel, and P. Charbonnier, The guided bilateral filter: When the joint/cross bilateral filter becomes robust, IEEE Trans. Image Process., 24 (2015), pp. 1199--1208.
6.
P. Chatterjee and P. Milanfar, A generalization of non-local means via kernel regression, in Proc. SPIE 6814, SPIE, Bellingham, WA, 2008, 68140P.
7.
P. Chatterjee and P. Milanfar, Clustering-based denoising with locally learned dictionaries, IEEE Trans. Image Process., 18 (2009), pp. 1438--1451.
8.
P. Chatterjee and P. Milanfar, Patch-based near-optimal image denoising, IEEE Trans. Image Process., 21 (2012), pp. 1635--1649.
9.
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse \textup3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080--2095.
10.
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, BM\textup3D image denoising with shape-adaptive principal component analysis, in Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS'09), 2009.
11.
A. Dauwe, B. Goossens, H. Q. Luong, and W. Philips, A fast non-local image denoising algorithm, in Proc. SPIE 6812, SPIE, Bellingham, WA, 2008, 681210.
12.
W. Dong, G. Shi, and X. Li, Nonlocal image restoration with bilateral variance estimation: A low-rank approach, IEEE Trans. Image Process., 22 (2013), pp. 700--711.
13.
F. Durand and J. Dorsey, Fast bilateral filtering for the display of high-dynamic-range images, ACM Trans. Graphics (TOG), 21 (2002), pp. 257--266.
14.
M. Elad, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process., 11 (2002), pp. 1141--1151.
15.
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736--3745.
16.
A. Foi, V. Katkovnik, and K. Egiazarian, Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images, IEEE Trans. Image Process., 16 (2007), pp. 1395--1411.
17.
S. Grewenig, S. Zimmer, and J. Weickert, Rotationally invariant similarity measures for nonlocal image denoising, J. Vis. Commun. Image Represent., 22 (2011), pp. 117--130.
18.
K. He, J. Sun, and X. Tang, Guided image filtering, IEEE Trans. Pattern Anal. Machine Intell., 35 (2013), pp. 1397--1409.
19.
C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, IEEE Trans. Image Process., 15 (2006), pp. 2866--2878.
20.
C. Knaus and M. Zwicker, Dual-domain image denoising, in Proceedings of the 20th IEEE International Conference on Image Processing (ICIP 2013), IEEE, Piscataway, NJ, 2013, pp. 440--444.
21.
C. Knaus and M. Zwicker, Progressive image denoising, IEEE Trans. Image Process., 23 (2014), pp. 3114--3125.
22.
M. Lebrun, A. Buades, and J. M. Morel, A nonlocal Bayesian image denoising algorithm, SIAM J. Imaging Sci., 6 (2013), pp. 1665--1688.
23.
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Process. Lett., 12 (2005), pp. 839--842.
24.
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, in Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, 2009, pp. 2272--2279.
25.
V. K. Nath, D. Hazarika, and A. Mahanta, Blocking artifacts reduction using adaptive bilateral filtering, in Proceedings of the 2010 International Conference on Signal Processing and Communications (SPCOM), IEEE, Piscataway, NJ, 2010, pp. 1--5.
26.
J. Orchard, M. Ebrahimi, and A. Wong, Efficient nonlocal-means denoising using the SVD, in Proceedings of the 15th IEEE International Conference on Image Processing (ICIP 2008), IEEE Press, Piscataway, NJ, 2008, pp. 1732--1735.
27.
G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, Digital photography with flash and no-flash image pairs, ACM Trans. Graph., 23 (2004), pp. 664--672.
28.
G. Peyré, Image processing with nonlocal spectral bases, Multiscale Model. Simul., 7 (2008), pp. 703--730.
29.
J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12 (2003), pp. 1338--1351.
30.
L. Shao, R. Yan, X. Li, and Y. Liu, From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms, IEEE Trans. Cybernet., 44 (2014), pp. 1001--1013.
31.
H. Takeda, S. Farsiu, and P. Milanfar, Kernel regression for image processing and reconstruction, IEEE Trans. Image Process., 16 (2007), pp. 349--366.
32.
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of the 6th International Conference on Computer Vision (ICCV), IEEE, Piscataway, NJ, 1998, pp. 839--846.
33.
D. Van De Ville and M. Kocher, SURE-based non-local means, IEEE Signal Process. Lett. 16 (2009), pp. 973--976.
34.
D. Van De Ville and M. Kocher, Nonlocal means with dimensionality reduction and SURE-based parameter selection, IEEE Trans. Image Process., 20 (2011), pp. 2683--2690.
35.
G. Yu and G. Sapiro, DCT image denoising: A simple and effective image denoising algorithm, IPOL Journal. Image Processing On Line, 1 (2011), http://dx.doi.org/10.5201/ipol.2011.ys-dot.
36.
M. Zhang and B. K. Gunturk, Compression artifact reduction with adaptive bilateral filtering, in Visual Communications and Image Processing 2009, Vol. 7257, SPIE, Bellingham, WA, 2009.
37.
Q. Zhang, X. Shen, L. Xu, and J. Jia, Rolling guidance filter, in Proceedings of the 13th European Conference on Computer Vision (ECCV 2014), Lecture Notes in Comput. Sci. 8691, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds., Springer, New York, 2014, pp. 815--830.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 1396 - 1420
ISSN (online): 1936-4954

History

Submitted: 23 July 2014
Accepted: 30 April 2015
Published online: 8 July 2015

Keywords

  1. image denoising
  2. robust statistics
  3. bilateral filter
  4. Fourier transform

MSC codes

  1. 68U10
  2. 94A08
  3. 60G35
  4. 65T50

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media