Abstract

In this paper, we present a reduced basis method for pricing European and American options based on the Black--Scholes and Heston models. To tackle each model numerically, we formulate the problem in terms of a time-dependent variational equality or inequality. We apply a suitable reduced basis approach for both types of options. The characteristic ingredients used in the method are a combined POD-Greedy and Angle-Greedy procedure for the construction of the primal and dual reduced spaces. Analytically, we prove the reproduction property of the reduced scheme and derive a posteriori error estimators. Numerical examples are provided, illustrating the approximation quality and convergence of our approach for the different option pricing models. Also, we investigate the reliability and effectivity of the error estimators.

Keywords

  1. reduced basis methods
  2. model reduction
  3. a posteriori error estimation
  4. option pricing

MSC codes

  1. 35K85
  2. 65K15
  3. 65M15
  4. 91B25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, Frontiers Appl. Math. 30, SIAM, Philadelphia, 2005.
2.
M. Balajewicz, D. Amsallem, and C. Farhat, Projection-Based Model Reduction for Contact Problems, preprint, Stanford University, 2015.
3.
F. Black and M. S. Scholes, The pricing of options and corporate liabilities, J. Political Economy, 81 (1973), pp. 637--654.
4.
P. Bochev, M. Gunzburger, and J. Shadid, Stability of the SUPG finite element method for transient advection--diffusion problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2301--2323.
5.
D. Boffi, M. Fortin, and F. Brezzi, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., Springer, Berlin, Heidelberg, 2013.
6.
A. Buffa, Y. Maday, A. T. Patera, C. Prud'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 595--603.
7.
S. Choi, Algorithms for orthogonal nonnegative matrix factorization, Neural Networks, 2008, pp. 1828--1832.
8.
R. Cont, N. Lantos, and O. Pironneau, A reduced basis for option pricing, SIAM J. Financial Math., 2 (2011), pp. 287--316.
9.
D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley & Sons, 2006.
10.
L. Feng, V. Linetsky, J. Luis Morales, and J. Nocedal, On the solution of complementarity problems arising in American options pricing, Optim. Methods Softw., 26 (2011), pp. 813--825.
11.
V. Galiotos, Stochastic Volatility and the Volatility Smile, Tech. Report 15, Department of Mathematics, Uppsala University, 2008.
12.
C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben, Springer-Lehrbuch Masterclass, Springer, 2002.
13.
A.-L. Gerner, A. Reusken, and K. Veroy, Reduced Basis A Posteriori Error Bounds for the Instationary Stokes Equations, preprint, arXiv:1208.5010, 2012.
14.
S. Glas and K. Urban, Numerical investigations of an error bound for reduced basis approximations of noncoercive variational inequalities, IFAC-PapersOnLine, 48 (2015), pp. 721--726.
15.
S. Glas and K. Urban, On noncoercive variational inequalities, SIAM J. Numer. Anal., 52 (2014), pp. 2250--2271.
16.
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Scientific Computation, Springer, 2008.
17.
M. A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, M2AN, Math. Model. Numer. Anal., 39 (2005), pp. 157--181.
18.
M. A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations, Ph.D. thesis, Massachusetts Institute of Technology, 2005.
19.
B. Haasdonk, Convergence rates of the POD-greedy method, M2AN Math. Model. Numer. Anal., 47 (2013), pp. 859--873.
20.
B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN Math. Model. Numer. Anal, 42 (2008), pp. 277--302.
21.
B. Haasdonk, J. Salomon, and B. Wohlmuth, A Reduced Basis Method for Parametrized Variational Inequalities, SimTech preprint 2011--17, University of Stuttgart, 2011.
22.
B. Haasdonk, J. Salomon, and B. Wohlmuth, A reduced basis method for parametrized variational inequalities, SIAM J. Numer. Anal., 50 (2012), pp. 2656--2676.
23.
B. Haasdonk, J. Salomon, and B Wohlmuth, A reduced basis method for the simulation of American options, in Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications (Leicester 2011), Springer, New York, 2013, pp. 821--829.
24.
C. Hager, S. Hüeber, and B. Wohlmuth, Numerical techniques for the valuation of basket options and its Greeks, J. Comput. Finance, 13 (2010), pp. 1--31.
25.
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud., 6 (1993), pp. 327--343.
26.
N. Hilber, O. Reichmann, C. Schwab, and C. Winter, Computational Methods for Quantitative Finance. Finite Element Methods for Derivative Pricing, Springer Finance, 2013.
27.
M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13 (2003), pp. 865--888.
28.
J. C. Hull, Options, Futures, and Other Derivative Securities, Prentice-Hall, Englewood Cliffs, NJ, 1993.
29.
S. Ikonen and J. Toivanen, Efficient numerical methods for pricing American options under stochastic volatility, Numer. Methods Partial Differential Equations, 24 (2008), pp. 104--126.
30.
S. Ikonen and J. Toivanen, Operator splitting methods for pricing American options under stochastic volatility, Numer. Math., 113 (2009), pp. 299--324.
31.
K. J. In't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model., 7 (2010), pp. 303--320.
32.
A. Janek, T. Kluge, R. Weron, and U. Wystup, FX smile in the Heston model, in Statistical Tools for Finance and Insurance, Springer, Heidelberg, 2011, pp. 133--162.
33.
N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Stud. Appl. Math. 8, SIAM, Philadelphia, 1988.
34.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classics Appl. Math. 31, SIAM, Philadelphia, 2000. Reprint of the 1980 original.
35.
A. Kunoth, C. Schneider, and K. Wiechers, Multiscale methods for the valuation of American options with stochastic volatility, Internat. J. Comput. Math., 89 (2012), pp. 1145--1163.
36.
D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), pp. 788--791.
37.
A. Mayerhofer and K. Urban, A Reduced Basis Method for Parabolic Partial Differential Equations with Parameter Functions and Application to Option Pricing, preprint, University of Ulm, 2014.
38.
O. Pironneau, Calibration of options on a reduced basis, J. Comput. Appl. Math., 232 (2009), pp. 139--147.
39.
O. Pironneau, Reduced basis for vanilla and basket options, Risk Decision Anal., 2 (2011), pp. 185--194.
40.
O. Pironneau, Proper orthogonal decomposition for pricing options, J. Comput. Finance, 16 (2012), pp. 33--46.
41.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math., Springer, Berlin, Heidelberg, 1994.
42.
D. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.
43.
G. Rozza, Shape Design by Optimal Flow Control and Reduced Basis Techniques: Applications to Bypass Configurations in Haemodynamics, Ph.D. thesis, EPFL, Lausanne, 2005.
44.
E. Sachs and M. Schu, Reduced order models (POD) for calibration problems in finance, in Numerical Mathematics and Advanced Applications, Springer, 2008, pp. 735--742.
45.
R. U. Seydel, Tools for Computational Finance, 4th ed., Universitext, Springer-Verlag, Berlin, 2009.
46.
P. Smaragdis, Non-negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs, in Independent Component Analysis and Blind Signal Separation, C. G. Puntonet and A. Prieto, eds., Lecture Notes in Comput. Sci. 3195, Springer, Berlin, Heidelberg, 2004, pp. 494--499.
47.
K. Veroy, C. Prud'homme, D. V. Rovas, and A. T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proceedings of 16th AIAA Computational Fluid Dynamics Conference, 2003, paper 2003-3847.
48.
A. Weiss and B. Wohlmuth, A posteriori error estimator and error control for contact problems, Math. Comp., 78 (2009), pp. 1237--1267.
49.
G. Winkler, T. Apel, and U. Wystup, Valuation of options in Heston’s stochastic volatility model using finite element methods, Foreign Exchange Risk, (2001), pp. 283--303.
50.
B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38 (2000), pp. 989--1012.
51.
B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20 (2011), pp. 569--734.
52.
Z. Zhang, E. Bader, and K. Veroy, A Duality Approach to Error Estimation for Variational Inequalities, preprint, RWTH Aachen, 2014.
53.
R. Zvan, P. A. Forsyth, and K. R. Vetzal, Penalty methods for American options with stochastic volatility, J. Comput. Appl. Math., 91 (1998), pp. 199--218.

Information & Authors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics
Pages: 685 - 712
ISSN (online): 1945-497X

History

Submitted: 6 August 2014
Accepted: 27 May 2015
Published online: 6 August 2015

Keywords

  1. reduced basis methods
  2. model reduction
  3. a posteriori error estimation
  4. option pricing

MSC codes

  1. 35K85
  2. 65K15
  3. 65M15
  4. 91B25

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media