Super-Polylogarithmic Hypergraph Coloring Hardness via Low-Degree Long Codes
Abstract
We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka the “short code” of Barak et al. [SIAM J. Comput., 44 (2015), pp. 1287--1324]) and the techniques proposed by Dinur and Guruswami [Israel J. Math., 209 (2015), pp. 611--649] to incorporate this code for inapproximability results. In particular, we prove quasi NP-hardness of the following problems on $n$-vertex hypergraphs: coloring a 2-colorable 8-uniform hypergraph with $2^{2^{\Omega(\sqrt{\log \log n})}}$ colors; coloring a 4-colorable 4-uniform hypergraph with $2^{2^{\Omega(\sqrt{\log \log n})}}$ colors; and coloring a 3-colorable 3-uniform hypergraph with $(\log n)^{\Omega(1/\log\log\log n)}$ colors. For the first two cases, the hardness results obtained are superpolynomial in what was previously known, and in the last case it is an exponential improvement. In fact, prior to this result, $(\log n)^{O(1)}$ colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for $O(1)$-colorable hypergraphs, and $(\log\log n)^{O(1)}$ for $O(1)$-colorable, 3-uniform hypergraphs.
1. S. Arora and E. Chlamtac, New approximation guarantee for chromatic number, in Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing (STOC), 2006, pp. 215--224, https://doi.org/10.1145/1132516.1132548.
2. , Approximate hypergraph coloring , Nordic J. Comput. , 3 ( 1996 ), pp. 425 -- 439 , https://www.cs.helsinki.fi/njc/References/alonkmr1996:425.html.
3. , New hardness results for graph and hypergraph colorings, in Proceedings of the 31st Conference on Computational Complexity, 2016, pp. 14:1--14:27, https://doi.org/10.4230/LIPIcs. CCC. 2016 . 14 . , https://doi.org/10.4230/LIPIcs.CCC.2016.14.
4. , Making the long code shorter , SIAM J. Comput. , 44 ( 2015 ), pp. 1287 -- 1324 , https://doi.org/10.1137/130929394.
5. , Free bits, PCPs, and nonapprox-imability---towards tight results , SIAM J. Comput. , 27 ( 1998 ), pp. 804 -- 915 , https://doi.org/10.1137/S0097539796302531.
6. , An $\tilde{O}(n^{3/14})$-coloring algorithm for $3$-colorable graphs , Inform. Process. Lett. , 61 ( 1997 ), pp. 49 -- 53 , https://doi.org/10.1016/S0020-0190(96)00190-1.
7. A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan, and D. Zuckerman, Optimal testing of Reed-Muller codes, in Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2010, pp. 488--497, https://doi.org/10.1109/FOCS.2010.54.
8. , New approximation algorithms for graph coloring , J. ACM , 41 ( 1994 ), pp. 470 -- 516 , https://doi.org/10.1145/176584.176586.
9. , Coloring bipartite hypergraphs, in Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 1084, W. H. Cunningham, S. T. McCormick, and M. Queyranne, eds., Springer, Berlin , Heidelberg , 1996 , pp. 345 -- 358 , https://doi.org/10.1007/3-540-61310-2_26.
10. E. Chlamtac, Approximation algorithms using hierarchies of semidefinite programming relaxations, in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007, pp. 691--701, https://doi.org/10.1109/FOCS.2007.72.
11. , PCPs via the low-degree long code and hardness for constrained hypergraph coloring , Israel J. Math. , 209 ( 2015 ), pp. 611 -- 649 , https://doi.org/10.1007/s11856-015-1231-3.
12. , A new multilayered PCP and the hardness of hypergraph vertex cover , SIAM J. Comput. , 34 ( 2005 ), pp. 1129 -- 1146 , https://doi.org/10.1137/S0097539704443057.
13. I. Dinur and G. Kol, Covering CSPs, in Proceedings of the 28th IEEE Conference on Computational Complexity, 2013, pp. 207--218, https://doi.org/10.1109/CCC.2013.29.
14. , Conditional hardness for approximate coloring , SIAM J. Comput. , 39 ( 2009 ), pp. 843 -- 873 , https://doi.org/10.1137/07068062X.
15. , The hardness of 3-uniform hypergraph coloring , Combinatorica , 25 ( 2005 ), pp. 519 -- 535 , https://doi.org/10.1007/s00493-005-0032-4.
16. , A threshold of $\ln n$ for approximating set cover , J. ACM , 45 ( 1998 ), pp. 634 -- 652 , https://doi.org/10.1145/285055.285059.
17. V. Guruswami, P. Harsha, J. Håstad, S. Srinivasan, and G. Varma, Super-polylogarithmic hypergraph coloring hardness via low-degree long codes, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), 2014, pp. 614--623, https://doi.org/10.1145/2591796.2591882.
18. , Hardness of approximate hypergraph coloring , SIAM J. Comput. , 31 ( 2002 ), pp. 1663 -- 1686 , https://doi.org/10.1137/S0097539700377165.
19. , On the hardness of 4-coloring a 3-colorable graph , SIAM J. Discrete Math. , 18 ( 2004 ), pp. 30 -- 40 , https://doi.org/10.1137/S0895480100376794.
20. , Optimal testing of multivariate polynomials over small prime fields , SIAM J. Comput. , 42 ( 2013 ), pp. 536 -- 562 , https://doi.org/10.1137/120879257.
21. S. Huang, Improved hardness of approximating chromatic number, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Comput. Sci. 8096, P. Raghavendra, S. Raskhodnikova, K. Jansen, and J. D. P. Rolim, eds., Springer, Berlin, Heidelberg, 2013, pp. 233--243, https://doi.org/10.1007/978-3-642-40328-6_17.
22. S. Huang, $2^{(\log N)^{1/10-o(1)}}$ Hardness for Hypergraph Coloring, preprint, https://arxiv.org/abs/1504.03923, 2015.
23. S. Khot, Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring, in Proceedings of the $42$nd IEEE Symposium on Foundations of Computer Science (FOCS), 2001, pp. 600--609, https://doi.org/10.1109/SFCS.2001.959936.
24. S. Khot, Hardness results for approximate hypergraph coloring, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC), 2002, pp. 351--359, https://doi.org/10.1145/509907.509962.
25. S. Khot, Hardness results for coloring 3-colorable 3-uniform hypergraphs, in Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS), 2002, pp. 23--32, https://doi.org/10.1109/SFCS.2002.1181879.
26. , Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , SIAM J. Comput. , 37 ( 2007 ), pp. 319 -- 357 , https://doi.org/10.1137/S0097539705447372.
27. , On the hardness of approximating the chromatic number , Combinatorica , 20 ( 2000 ), pp. 393 -- 415 , https://doi.org/10.1007/s004930070013.
28. D. M. Kane and R. Meka, A PRG for Lipschitz functions of polynomials with applications to sparsest cut, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing (STOC), 2013, pp. 1--10, https://doi.org/10.1145/2488608.2488610.
29. , Approximate graph coloring by semidefinite programming , J. ACM , 45 ( 1998 ), 246 -- 265 , https://doi.org/10.1145/274787.274791.
30. , Approximating coloring and maximum independent sets in 3-uniform hypergraphs , J. Algorithms , 41 ( 2001 ), pp. 99 -- 113 , https://doi.org/10.1006/jagm.2001.1173.
31. , Hardness of coloring 2-colorable 12-uniform hypergraphs with $\exp(\log^{\Omega(1)} n)$ colors , in Proceedings of the IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS) , 2014 , pp. 206 -- 215 , https://doi.org/10.1109/FOCS.2014.30.
32. , Combinatorial coloring of 3-colorable graphs , in Proceedings of the IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS) , 2012 , pp. 68 -- 75 , https://doi.org/10.1109/FOCS.2012.16.
33. , Coloring 3-colorable graphs with $o(n^{1/5})$ colors, in Proceedings of the 31st International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs 25, E. W. Mayr and N. Portier, eds., Schloss Dagstuhl, Dagstuhl , Germany , 2014 , pp. 458 -- 469 , https://doi.org/10.4230/LIPIcs.STACS.2014.458.
34. R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, UK, 1997, https://doi.org/10.1017/CBO9780511525926.
35. , A parallel repetition theorem , SIAM J. Comput. , 27 ( 1998 ), pp. 763 -- 803 , https://doi.org/10.1137/S0097539795280895.
36. R. Saket, Hardness of finding independent sets in 2-colorable hypergraphs and of satisfiable CSPs, in Proceedings of the 29th IEEE Conference on Computational Complexity, 2014, pp. 78--89, https://doi.org/10.1109/CCC.2014.16.
37. , Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions , Chic. J. Theoret. Comput. Sci. , 2015 ( 2015 ), 3 , https://doi.org/10.4086/cjtcs.2015.003.
38. , Improving the performance guarantee for approximate graph coloring , J. ACM , 30 ( 1983 ), pp. 729 -- 735 , https://doi.org/10.1145/2157.2158.