Renormalization for Autonomous Nearly Incompressible BV Vector Fields in Two Dimensions

Given a bounded autonomous vector field $b \colon \mathbb{R}^2 \to \mathbb{R}^2$, we study the uniqueness of bounded solutions to the initial value problem for the related transport equation $\partial_t u + b \cdot \nabla u= 0.$ Assuming that $b$ is of class BV and it is nearly incompressible, we prove uniqueness of weak solutions to the transport equation. The present work extends the result obtained in [S. Bianchini and N. A. Gusev, Steady nearly incompressible vector fields in $2$D: Chain rule and Renormalization, preprint, 2014], where the steady nearly incompressible case is treated. Our proof is based on splitting the equation onto a suitable partition of the plane: this technique was introduced in [G. Alberti, S. Bianchini, and G. Crippa, J. Eur. Math. Soc. (JEMS), 16 (2014), pp. 201--234], using the results on the structure of level sets of Lipschitz maps obtained in [G. Alberti, S. Bianchini, and G. Crippa, Ann. Sc. Norm. Super. Pisa Cl. Sci.(s), 12 (2013), pp. 863--902]. Furthermore, in order to construct the partition, we use Ambrosio's superposition principle [L. Ambrosio, Invent. Math., 158 (2004), pp. 227--260].

  • 1.  G. Alberti S. Bianchini and  G. Crippa , Structure of level sets and Sard-type properties of Lipschitz maps , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) , 12 ( 2013 ), pp. 863 -- 902 . Google Scholar

  • 2.  G. Alberti S. Bianchini and  G. Crippa , A uniqueness result for the continuity equation in two dimensions , J. Eur. Math. Soc. (JEMS), 16 ( 2014 ), pp. 201 -- 234 . CrossrefGoogle Scholar

  • 3.  L. Ambrosio , Transport equation and cauchy problem for $bv$ vector fields , Invent. Math. , 158 ( 2004 ), pp. 227 -- 260 . CrossrefISIGoogle Scholar

  • 4.  L. Ambrosio and  F. Bouchut . De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions , Comm. Partial Differential Equations , 29 ( 2004 ), pp. 1635 -- 1651 . CrossrefISIGoogle Scholar

  • 5.  L. Ambrosio G. Crippa and  S. Maniglia , Traces and fine properties of a BD class of vector fields and applications , Ann. Fac. Sci. Toulouse Math. (6) , 14 ( 2005 ), pp. 527 -- 561 . CrossrefGoogle Scholar

  • 6.  L. Ambrosio N. Fusco and  D. Pallara , Functions of Bounded Variation and Free Discontinuity Problems , Oxford Science Publications , Clarendon Press , Oxford, UK , 2000 . Google Scholar

  • 7.  S. Bianchini and  N. A. Gusev , Steady Nearly Incompressible Vector Fields in 2D: Chain Rule and Renormalization, preprint , 2014 . Google Scholar

  • 8.  F. Bouchut and  G. Crippa , Lagrangian flows for vector fields with gradient given by a singular integral , J. Hyperbolic Diff. Equ. , 10 ( 2013 ), pp. 235 -- 282 . CrossrefISIGoogle Scholar

  • 9.  A. Bressan , An ill posed Cauchy problem for a hyperbolic system in two space dimensions , Rend. Sem. Mat. Univ. Padova , 110 ( 2003 ), pp. 103 -- 117 . ISIGoogle Scholar

  • 10.  G.-Q. Chen and  H. Frid , On the theory of divergence-measure fields and its applications , Bull. Braz. Math. Soc. , 32 ( 2001 ), pp. 401 -- 433 . CrossrefGoogle Scholar

  • 11.  G. Crippa . De Lellis, Estimates and regularity results for the DiPerna-Lions flow , J. Reine Angew. Math. , 616 ( 2008 ), pp. 15 -- 46 . CrossrefISIGoogle Scholar

  • 12.  C. De Lellis , Notes on Hyperbolic Systems of Conservation Laws and Transport Equations , in Handbook of Differential Equations: Evolutionary Equations. , Vol. 3 , Elsevier/North-Holland , Amsterdam , 2007 , pp. 277 -- 382 . CrossrefGoogle Scholar

  • 13.  R. J. DiPerna and  P.-L. Lions , Ordinary differential equations, transport theory and Sobolev spaces , Invent. Math. , 98 ( 1989 ), pp. 511 -- 547 . CrossrefISIGoogle Scholar

  • 14.  D. H. Fremlin , Measure Theory , Vol. 4 , Torres Fremlin , Colchester, UK , 2002 . Google Scholar

  • 15.  P. E. Jabe , Differential equations with singular fields , J. Math. Pures Appl. , 94 ( 2010 ), pp. 597 -- 621 . CrossrefISIGoogle Scholar

  • 16.  B. L. Keyfitz and  H. C. Kranzer , A system of nonstrictly hyperbolic conservation laws arising in elasticity theory , Arch. Ration. Mech. Anal. , 72 ( 1979/80 ), pp. 219 -- 241 . CrossrefISIGoogle Scholar