Abstract

We prove upper bounds on the order of convergence of Frolov's cubature formula for numerical integration in function spaces of dominating mixed smoothness on the unit cube with homogeneous boundary condition. More precisely, we study worst-case integration errors for Besov $\mathbf{B}^s_{p,\theta}$ and Triebel--Lizorkin spaces $\mathbf{F}^s_{p,2}$ and our results treat the whole range of admissible parameters $(s\geq 1/p)$. In particular, we obtain upper bounds for the difficult the case of small smoothness which is given for Triebel--Lizorkin spaces $\mathbf{F}^s_{p,2}$ in case $1<\theta<p<\infty$ with $1/p<s\leq 1/\theta$. The presented upper bounds on the worst-case error show a completely different behavior compared to “large” smoothness $s>1/\theta$. In the latter case the presented upper bounds are optimal, i.e., they cannot be improved by any other cubature formula. The optimality for “small” smoothness is open.

Keywords

  1. numerical integration
  2. Besov--Triebel--Lizorkin space
  3. Sobolev space
  4. Frolov cubature formula

MSC codes

  1. 46E35
  2. 65D30
  3. 65D32

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. I. Amanov, Spaces of Differentiable Functions with Dominating Mixed Derivatives, Nauka Kaz. SSR, Alma-Ata, 1976.
2.
N. S. Bakhvalov, Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions, Zh. Vychisl. Mat. Mat. Fiz., 4 (1963), pp. 5--63.
3.
N. S. Bakhvalov, Lower estimates of asymptotic characteristics of classes of functions with dominant mixed derivative, Mat. Zametki, 12 (1972), pp. 655--664.
4.
H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel--Lizorkin spaces, Stud. Math., 119 (1996), pp. 219--246.
5.
A.-P. Calderón, An atomic decomposition of distributions in parabolic $H^{p}$ spaces, Adv. Math., 25 (1977), pp. 216--225.
6.
J. Dick and F. Pillichshammer, Discrepancy theory and quasi-Monte Carlo integration, in Panorama in Discrepancy Theory, W. W. L. Chen, A. Srivastav, end G. Travaglini, eds., Springer, Berlin, 2013, to appear.
7.
V. V. Dubinin, Cubature formulas for classes of functions with bounded mixed difference, Math. USSR Sbornik, 76 (1993), pp. 283--292.
8.
V. V. Dubinin, Cubature formulae for Besov classes, Izv. Math, 61 (1997), pp. 259--283.
9.
D. Du͂ng and T. Ullrich, Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square, Math. Nachr., 288 (2015), pp. 743--762.
10.
J. Franke, On the spaces $F^s_{p,q}$ of Triebel--Lizorkin type: Pointwise multipliers and spaces on domains, Math. Nachr., 12 (1986), pp. 29--68.
11.
M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93 (1990), pp. 34--170.
12.
K. K. Frolov, Upper error bounds for quadrature formulas on function classes, Dokl. Akad. Nauk SSSR, 231 (1976), pp. 818--821.
13.
P. Glasserman, Monte Carlo Methods in Financial Engineering, Stoch. Model. Appl. Probab., Springer, Berlin, 2004.
14.
M. Hansen, Nonlinear Approximation and Function Spaces of Dominating Mixed Smoothness, Thesis, Friedrich-Schiller-Universität Jena, Jena, 2010.
15.
M. Hansen and J. Vybíral, The Jawerth--Franke embedding of spaces with dominating mixed smoothness, Georgian Math. J., 16 (2009), pp. 667--682.
16.
A. Hinrichs, Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness, Math. Nachr., 283 (2010), pp. 478--488.
17.
A. Hinrichs, L. Markhasin, J. Oettershagen, and T. Ullrich, Optimal quasi-Monte Carlo rules on order $2$ digital nets for the numerical integration of multivariate periodic functions, Numer. Math., 2015, \tt
18.
A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski, The curse of dimensionality for numerical integration of smooth functions, Math. Comp., 83 (2014), pp. 2853--2863.
19.
A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski, The curse of dimensionality for numerical integration of smooth functions II, J. Complexity, 30 (2014), pp. 117--143.
20.
A. Hinrichs, E. Novak, and M. Ullrich, On weak tractability of the Clenshaw--Curtis Smolyak algorithm, J. Approx. Theory, 183 (2014), pp. 31--44.
21.
A. Hinrichs and J. Oettershagen, Optimal Point Sets for Quasi--Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives, preprint, arXiv:1409.5894, 2014.
22.
E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math., 66 (1962), pp. 140--151.
23.
S. Janson and M. H. Taibleson, Calderón's representation theorems, Rend. Semin. Mat. Univ. Politec. Torino, 39 (1982), pp. 27--35.
24.
B. Jawerth, Some observations on Besov and Lizorkin--Triebel spaces, Math. Scand., 40 (1977), pp. 94--104.
25.
N. M. Korobov, Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR, 124 (1959), pp. 1207--1210.
26.
D. Krieg and E. Novak, A Universal Algorithm for Multivariate Integration, preprint, arXiv:1507.06853, 2015.
27.
U. Luther and K. Rost, Matrix exponentials and inversion of confluent Vandermonde matrices, Electron. Trans. Numer. Anal., 18 (2004), pp. 91--100.
28.
L. Markhasin, Discrepancy and integration in function spaces with dominating mixed smoothness, Dissertationes Math. (Rozprawy Mat.), 494 (2013), pp. 1--81.
29.
L. Markhasin, Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension, J. Complexity, 29 (2013), pp. 370--388.
30.
L. Markhasin, Discrepancy of generalized Hammersley type point sets in Besov spaces with dominating mixed smoothness, Unif. Distrib. Theory, 8 (2013), pp. 135--164.
31.
V. K. Nguyen, M. Ullrich, and T. Ullrich, Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube, preprint, arXiv:1511.02036, 2015.
32.
S. M. Nikol'skij, Approximation of functions of several variables and embedding theorems, Nauka Moskva, 1977.
33.
V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications, Russian Math. Surveys, 45 (1990), pp. 87--120.
34.
V. S. Rychkov, On a theorem of Bui, Paluszyński and Taibleson, Proc. Steklov Inst. Math., 227 (1999), pp. 280--292.
35.
V. S. Rychkov, On restrictions and extensions of the Besov and Triebel--Lizorkin spaces with respect to Lipschitz domains, J. Lond. Math. Soc., 60 (1999), pp. 237--257.
36.
A. Seeger and T. Ullrich, Haar Projection Numbers and Failure of Unconditional Convergence in Sobolev Spaces, preprint, arXiv e-prints, arXiv:1507.01211 [math.CA], 2015.
37.
A. Seeger and T. Ullrich, Lower Bounds for Haar Projections: Deterministic Examples, arXiv e-prints, arXiv:1511.01470 [math.CA], 2015.
38.
H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, John Wiley & Sons, Chichester, 1987.
39.
M. M. Skriganov, Constructions of uniform distributions in terms of geometry of numbers, Algebra i Analiz, 6 (1994), pp. 200--230.
40.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser. 32, Princeton University Press, Princeton, NJ, 1971.
41.
J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
42.
V. N. Temlyakov, Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions, Izv. SSSR, 49 (1985), pp. 986--1030.
43.
V. N. Temlyakov, On reconstruction of multivariate periodic functions based on their values at the knots of number-theoretical nets, Anal. Math., 12 (1986), pp. 287--305.
44.
V. N. Temlyakov, Approximation of functions with bounded mixed derivative, Tr. MIAN, 178 (1986), pp. 1--112.
45.
V. N. Temlyakov, On a way of obtaining lower estimates for the errors of quadrature formulas, Mat. Sb., 181 (1990), pp. 1403--1413.
46.
V. N. Temlyakov, Error estimates for Fibonacci quadrature formulas for classes of functions with a bounded mixed derivative, Tr. Mat. Inst. Steklova, 200 (1991), pp. 327--335.
47.
V. N. Temlyakov, Approximation of Periodic Functions, Comput. Math. Anal. Ser., Nova Science Publishers, Commack, NY, 1993.
48.
V. N. Temlyakov, On error estimates of cubature formulas, Tr. Mat. Inst. Steklova, 207 (1994), pp. 326--338.
49.
V. N. Temlyakov, Cubature formulas, discrepancy, and nonlinear approximation, J. Complexity, 19 (2003), pp. 352--391.
50.
V. N. Temlyakov, Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness, Mtem. Sb., 206 (2015), pp. 131--160.
51.
M. F. Timan, Imbedding classes of functions in $L_p$, Izv. Vyssh. Uchebn. Zaved., Mat., 10 (1974), pp. 61--74.
52.
H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
53.
H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, EMS Tracts Math., European Mathematical Society, Zürich, 2010.
54.
M. Ullrich, On “Upper error bounds for quadrature formulas on function classes” by K. K. Frolov, arXiv e-prints, arXiv:1404.5457, 2014.
55.
T. Ullrich, Local Mean Characterization of Besov--Triebel--Lizorkin Type Spaces with Dominating Mixed Smoothness on Rectangular Domains, preprint, 2008.
56.
T. Ullrich, Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square, J. Complexity, 30 (2014), pp. 72--94.
57.
P. L. Ul'yanov, Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics, Mat. Sb. (N.S.), 81 (1970), pp. 104--131.
58.
J. Vybíral, Function spaces with dominating mixed smoothness, Dissertationes Math., 436 (2006), 73 pp.
59.
J. Vybíral, A new proof of the Jawerth--Franke embedding, Rev. Mat. Complut., 21 (2008), pp. 75--82.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 969 - 993
ISSN (online): 1095-7170

History

Submitted: 31 March 2015
Accepted: 27 January 2016
Published online: 31 March 2016

Keywords

  1. numerical integration
  2. Besov--Triebel--Lizorkin space
  3. Sobolev space
  4. Frolov cubature formula

MSC codes

  1. 46E35
  2. 65D30
  3. 65D32

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media