Abstract

In this paper we study the unidirectional transport effect for Brownian ratchets modeled by Fokker--Planck-type equations. In particular, we consider the adiabatic and semiadiabatic limits for tilting ratchets, generic ratchets with small diffusion, and the multistate chemical ratchets. Having established a linear relation between the bulk transport velocity and the biperiodic solution, and using relative entropy estimates and new functional inequalities, we obtain explicit asymptotic formulas for the transport velocity and qualitative results concerning the direction of transport. In particular, we prove the conjecture by Blanchet, Dolbeault, and Kowalczyk that the bulk velocity of the stochastic Stokes' drift is nonzero for every nonconstant potential.

Keywords

  1. Brownian motor
  2. tilting ratchet
  3. stochastic Stokes' drift
  4. Fokker--Planck equation
  5. periodic solution
  6. transport
  7. relative entropy

MSC codes

  1. 26D10
  2. 35Q84
  3. 35Q92
  4. 47H10
  5. 60J70

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Ait-Haddou and W. Herzog, Brownian ratchet models of molecular motors, Cell Biochem. Biophys., 38 (2003), pp. 191--213.
2.
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276 (1997), pp. 917--922.
3.
J.-P. Bartier, J. Dolbeault, R. Illner, and M. Kowalczyk, A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients, Math. Models Methods Appl. Sci., 17(2007), pp. 327--362.
4.
I. Bena, M. Copelli, and C. Van den Broeck, Stokes' drift: A rocking ratchet, J. Stat. Phys., 101 (2000), pp. 415--424.
5.
A. Blanchet, J. Dolbeault, and M. Kowalczyk, Travelling fronts in stochastic Stokes' drifts, Phys. A, 387 (2008), pp. 5741--5751.
6.
A. Blanchet, J. Dolbeault, and M. Kowalczyk, Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of Brownian ratchets, SIAM J. Math. Anal., 41 (2009), pp. 46--76.
7.
W. R. Browne and B. L. Feringa, Making molecular machines work, Nature Nanotechnology, 1 (2006), pp. 25--35.
8.
M. Chipot, S. Hastings, and D. Kinderlehrer, Transport in a molecular motor system, ESAIM Math. Model. Numer. Analy., 38 (2004), pp. 1011--1034.
9.
M. Chipot, D. Hilhorst, D. Kinderlehrer, and M. Olech, Contraction in $L^1$ for a system arising in chemical reactions and molecular motors, Differ. Equ. Appl., 1 (2009), pp. 139--151.
10.
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
11.
I. Csiszár, $I$-divergence geometry of probability distributions and minimization problems, Ann. Probab., 3 (1975), pp. 146--158.
12.
A.-L. Dalibard, Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux, J. Eur. Math. Soc. (JEMS), 13 (2011), pp. 1245--1288.
13.
J. Dolbeault, D. Kinderlehrer, and M. Kowalczyk, Remarks about the flashing ratchet, in Partial Differential Equations and Inverse Problems, Contemp. Math. 362, AMS, Providence, RI, 2004, pp. 167--175.
14.
S. D. Eidelman, Parabolic Systems, North-Holland, Amsterdam, 1969.
15.
M. Fistul, Symmetry broken motion of a periodically driven brownian particle: Nonadiabatic regime, Phys. Rev. E, 65 (2002), 046621.
16.
M. Gori, Lower Semicontinuity and Relaxation for Integral and Supremal Functionals, Ph.D. thesis, University of Pisa, 2004.
17.
N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), pp. 302--351.
18.
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Modern Phys., 81 (2009), p. 387.
19.
P. Hänggi, F. Marchesoni, and F. Nori, Brownian motors, Ann. Phys., 14 (2005), pp. 51--70.
20.
S. Hastings, D. Kinderlehrer, and J. B. McLeod, Diffusion mediated transport in multiple state systems, SIAM J. Math. Anal., 39 (2007), pp. 1208--1230.
21.
K. M. Jansons and G. Lythe, Stochastic Stokes drift, Phys. Rev. Let, 81 (1998), p. 3136.
22.
E. Kay, D. Leigh, and F. Zerbetto, Synthetic molecular motors and mechanical machines, Angew. Chemie Internat., 46 (2007), pp. 72--191.
23.
D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Ration. Mech. Anal., 161 (2002), pp. 149--179.
24.
S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins, NoDEA Nonlinear Differential Equations Appl., 20 (2013), pp. 129--147.
25.
R. Ortega, A counterexample for the damped pendulum equation, Acad. Roy. Belg. Bull. Cl. Sci. (5), 73 (1987), pp. 405--409.
26.
R. Ortega and M. Tarallo, Degenerate equations of pendulum-type, Commun. Contemp. Math., 2 (2000), pp. 127--149.
27.
J. Parrondo and B. J. de Cisneros, Energetics of Brownian motors: A review, Appl. Phys. A, 75 (2002), pp. 179--191.
28.
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: A homogenization approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 2055--2071.
29.
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: A large deviation approach, Arch. Ration. Mech. Anal., 193 (2009), pp. 153--169.
30.
B. Perthame and P. E. Souganidis, A homogenization approach to flashing ratchets, NoDEA Nonlinear Differential Equations Appl., 18 (2011), pp. 45--58.
31.
F. O. Porper and S. D. Eidelman, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Mat. Nauk, 39 (1984), pp. 107--156.
32.
P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep., 361 (2002), pp. 57--265.
33.
P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A, 75 (2002), pp. 169--178.
34.
R. Salgado-García, M. Aldana, and G. Martínez-Mekler, Deterministic ratchets, circle maps, and current reversals, Phys. Rev. Lett., 96 (2006), 134101.
35.
J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 101 (1961), pp. 139--167.
36.
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65--96.
37.
D. Vorotnikov, The flashing ratchet and unidirectional transport of matter, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), pp. 963--971.
38.
D. Vorotnikov, Analytical aspects of the Brownian motor effect in randomly flashing ratchets, J. Math. Biol., 68 (2014), pp. 1677--1705.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 950 - 980
ISSN (online): 1095-7154

History

Submitted: 9 April 2015
Accepted: 28 December 2015
Published online: 15 March 2016

Keywords

  1. Brownian motor
  2. tilting ratchet
  3. stochastic Stokes' drift
  4. Fokker--Planck equation
  5. periodic solution
  6. transport
  7. relative entropy

MSC codes

  1. 26D10
  2. 35Q84
  3. 35Q92
  4. 47H10
  5. 60J70

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media