Initialization of Homoclinic Solutions near Bogdanov--Takens Points: Lindstedt--Poincaré Compared with Regular Perturbation Method
Abstract
To continue a branch of homoclinic solutions starting from a Bogdanov--Takens (BT) point in parameter and state space, one needs a predictor based on asymptotics for the bifurcation parameter values and the corresponding small homoclinic orbits in the phase space. We derive two explicit asymptotics for the homoclinic orbits near a generic BT point. A recent generalization of the Lindstedt--Poincaré (L-P) method is applied to approximate a homoclinic solution of a strongly nonlinear autonomous system that results from blowing up the BT normal form. This solution allows us to derive an accurate second-order homoclinic predictor to the homoclinic branch rooted at a generic BT point of an $n$-dimensional ordinary differential equation (ODE). We prove that the method leads to the same homoclinicity conditions as the classical Melnikov technique, the branching method, and the regular perturbation (R-P) method. However, it is known that the R-P method leads to a “parasitic turn” near the saddle point. The new asymptotics based on the L-P method do not have this turn, making them more suitable for numerical implementation. We show how to use these asymptotics to calculate the initial data to continue homoclinic orbits in two free parameters. The new homoclinic predictors are implemented in the MATLAB continuation package MatCont to initialize the continuation of homoclinic orbits from a BT point. Two examples with multidimensional state spaces are included.
1. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
2. , Robustness margins for indirect field oriented control of induction motors , IEEE Trans. Automat. Control , 45 ( 2000 ), pp. 1226 -- 1231 .
3. , Instability mechanisms in indirect field oriented control drives: Theory and experimental results, in Proceedings of the 15th IFAC World Congress (Barcelona, Spain), IFAC Proc. Vol. 15, Elsevier , Amsterdam , 2002 , pp. 125 -- 130 . http://dx.doi.org/10.3182/20020721-6-ES-1901.01574.
4. , Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincaré method , Nonlinear Dynam. , 23 ( 2000 ), pp. 67 -- 86 .
5. , Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point , IMA J. Numer. Anal. , 14 ( 1994 ), pp. 381 -- 410 .
6. , Numerical continuation, and computation of normal forms, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., North--Holland , Amsterdam , 2002 , pp. 149 -- 219 .
7. S. Bindel, J. Demmel, and M. Friedman, Continuation of Invariant Subspaces for Large Bifurcation Problems, Tech. Report UCB/EECS-2006-13, EECS Department, University of California, Berkeley, 2006.
8. , A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method , Nonlinear Dynam. , 64 ( 2011 ), pp. 221 -- 236 .
9. , A numerical toolbox for homoclinic bifurcation analysis , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 6 ( 1996 ), pp. 867 -- 887 .
10. , A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators , J. Sound Vibration , 322 ( 2009 ), pp. 381 -- 392 .
11. , Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method , Sci. China Technol. Sci. , 53 ( 2010 ), pp. 692 -- 702 .
12. , Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method , J. Sound Vibration , 212 ( 1998 ), pp. 771 -- 780 .
13. , Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method , Nonlinear Dynam. , 58 ( 2009 ), pp. 417 -- 429 .
14. , A hyperbolic Lindstedt-Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators , Acta Mech. Sin. , 25 ( 2009 ), pp. 721 -- 729 .
15. Y. Y. Chen, L. W. Yan, K. Y. Sze, and S. H. Chen, Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems, Appl. Math. Mech. (English Ed.), 33 (2012), pp. 1137--1152.
16. S.-N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, UK, 1994.
17.
C . de Boor and B. Swartz, Collocation at Gaussian points , SIAM J. Numer. Anal. , 10 ( 1973 ), pp. 582 -- 606 . http://epubs.siam.org/doi/abs/10.1137/0710052.18. , Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB , ACM Trans. Math. Software , 38 ( 2012 ), 18 (34 pages).
19. , Computing connecting orbits via an improved algorithm for continuing invariant subspaces , SIAM J. Sci. Comput. , 22 ( 2000 ), pp. 81 -- 94 . http://epubs.siam.org/doi/abs/10.1137/S1064827598344868.
20. : A MATLAB package for numerical bifurcation analysis of ODEs , ACM Trans. Math. Software , 29 ( 2003 ), pp. 141 -- 164 .
21. , New features of the software MatCont for bifurcation analysis of dynamical systems , Math. Comput. Model. Dyn. Syst. , 14 ( 2008 ), pp. 147 -- 175 .
22. , On smooth decompositions of matrices , SIAM J. Matrix Anal. Appl. , 20 ( 1999 ), pp. 800 -- 819 . http://epubs.siam.org/doi/abs/10.1137/S0895479897330182.
23. , Continuation of invariant subspaces , Numer. Linear Algebra Appl. , 8 ( 2001 ), pp. 317 -- 327 .
24. , Continuation of homoclinic orbits in MATLAB, in Computational Science (ICCS 2005), Lecture Notes in Comput. Sci. 3514, V. S. Sunderam, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra, eds., Springer, Berlin , Heidelberg , 2005 , pp. 263 -- 270 .
25. , Hopf bifurcation in indirect field-oriented control of induction motors , Automatica , 38 ( 2002 ), pp. 829 -- 835 .
26. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
27. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed., Springer-Verlag, New York, 2004.
28. . Kuznetsov, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 15 ( 2005 ), pp. 3535 -- 3546 .
29. , Improved homoclinic predictor for Bogdanov-Takens bifurcation , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 24 ( 2014 ), 1450057 (12 pages).
30. , Accurate approximation of homoclinic solutions in Gray-Scott kinetic model , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 25 ( 2015 ), 1550125 (10 pages).
31. , Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs , Phys. D , 237 ( 2008 ), pp. 3061 -- 3068 .
32. J. Moiola and G. Chen, Hopf Bifurcation Analysis: A Frequency Domain Approach, World Scientific, Singapore, 1996.
33. A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981.
34. A. J. Rodríguez-Luis, E. Freire, and E. Ponce, A method for homoclinic and heteroclinic continuation in two and three dimensions, in Continuation and Bifurcations: Numerical Techniques and Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 313, D. Roose, B. De Dier, and A. Spence, eds., Kluwer Acad. Publ., Dordrecht, 1990, pp. 197--210.
35. , Codimension-two bifurcations in indirect field oriented control of induction motor drives , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 18 ( 2008 ), pp. 779 -- 792 .
36. , Bogdanov-Takens bifurcation in indirect field oriented control of induction motor drives, in Proceedings of the 43rd IEEE Conference on Decision and Control (Atlantis, Bahamas), Vol. 4, IEEE, Piscataway , NJ , 2004 , pp. 4357 -- 4362 . http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1429436.
37. , Bifurcation and predictability analysis of a low-order atmospheric circulation model , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 5 ( 1995 ), pp. 1701 -- 1711 .
38.
L . van Veen, Baroclinic flow and the Lorenz-84 model , Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 13 ( 2003 ), pp. 2117 -- 2139 .39. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Springer-Verlag, New York, 2003.