Abstract

We introduce a new nonsmooth variational model for the restoration of manifold-valued data which includes second order differences in the regularization term. While such models were successfully applied for real-valued images, we introduce the second order difference and the corresponding variational models for manifold data, which up to now only existed for cyclic data. The approach requires a combination of techniques from numerical analysis, convex optimization, and differential geometry. First, we establish a suitable definition of absolute second order differences for signals and images with values in a manifold. Employing this definition, we introduce a variational denoising model based on first and second order differences in the manifold setup. In order to minimize the corresponding functional, we develop an algorithm using an inexact cyclic proximal point algorithm. We propose an efficient strategy for the computation of the corresponding proximal mappings in symmetric spaces utilizing the machinery of Jacobi fields. For the $n$-sphere and the manifold of symmetric positive definite matrices, we demonstrate the performance of our algorithm in practice. We prove the convergence of the proposed exact and inexact variant of the cyclic proximal point algorithm in Hadamard spaces. These results which are of interest on its own include, e.g., the manifold of symmetric positive definite matrices.

Keywords

  1. manifold-valued data
  2. second order differences
  3. TV-like methods on manifolds
  4. nonsmooth variational methods
  5. Jacobi fields
  6. Hadamard spaces
  7. proximal mappings
  8. DT-MRI

MSC codes

  1. 65K10
  2. 49Q99
  3. 49M37

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.
2.
A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., 38 (1951), pp. 5--23.
3.
M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math., 194 (2013), pp. 689--701.
4.
M. Bačák, Computing medians and means in Hadamard spaces, SIAM J. Optim., 24 (2014), pp. 1542--1566.
5.
M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 22, De Gruyter, Berlin, 2014.
6.
S. Banert, Backward--backward splitting in Hadamard spaces, J. Math. Anal. Appl., 414 (2014), pp. 656--665.
7.
P. Basser, J. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging, Biophys. J., 66 (1994), pp. 259--267.
8.
M. Berger, A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003.
9.
R. Bergmann, F. Laus, G. Steidl, and A. Weinmann, Second order differences of cyclic data and applications in variational denoising, SIAM J. Imaging Sci., 7 (2014), pp. 2916--2953.
10.
R. Bergmann and A. Weinmann, Inpainting of cyclic data using first and second order differences, in Proceedings of EMCVPR 2015, Lecture Notes in Comput. Sci. 8932, Springer, Berlin, 2015, pp. 155--168.
11.
R. Bergmann and A. Weinmann, A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data, J. Math. Imaging Vision, to appear.
12.
D. P. Bertsekas, Incremental proximal methods for large scale convex optimization, Math. Program., 129 (2011), pp. 163--195.
13.
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2009), pp. 1--42.
14.
B. Burgeth, M. Welk, C. Feddern, and J. Weickert, Morphological operations on matrix-valued images, in Proceedings of Computer Vision (ECCV 2004), Lecture Notes in Comput. Sci. 3024, Springer, Berlin, 2004, pp. 155--167.
15.
A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167--188.
16.
T. F. Chan, S. Kang, and J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Visual Comm. Image Represent., 12 (2001), pp. 422--435.
17.
T. F. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), pp. 503--516.
18.
J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, Vol. 365, AMS, Providence, RI, 1975.
19.
C. Chefd'Hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for constrained matrix-valued images, J. Math. Imaging Vision, 20 (2004), pp. 147--162.
20.
P. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G. J. Parker, and D. C. Alexander, Camino: Open-source diffusion-NRI reconstruction and processing, Proc. Intl. Soc. Mag. Reson. Med., 14 (2006), p. 2759.
21.
S. Didas, G. Steidl, and S. Setzer, Combined $\ell_2$ data and gradient fitting in conjunction with $\ell_1$ regularization, Adv. Comput. Math., 30 (2009), pp. 79--99.
22.
S. Didas, J. Weickert, and B. Burgeth, Properties of higher order nonlinear diffusion filtering, J. Math. Imaging Vision, 35 (2009), pp. 208--226.
23.
M. P. do Carmo, Riemannian Geometry, Birkhäuser-Verlag, Basel, Switzerland, 1992.
24.
J. H. Eschenburg, Lecture notes on symmetric spaces, preprint, 1997.
25.
J. H. Eschenburg, Symmetric spaces, topology, and linear algebra, preprint, 2014.
26.
O. P. Ferreira and P. R. Oliveira, Subgradient algorithm on Riemannian manifolds, J. Optim. Theory Appl., 97 (1998), pp. 93--104.
27.
O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization, 51 (2002), pp. 257--270.
28.
O. Freifeld and M. J. Black, Lie bodies: A manifold representation of $3$D human shape, in Proceedings of ECCV 2012, Springer, Berlin, 2012, pp. 1--14.
29.
M. Giaquinta, G. Modica, and J. Souček, Variational problems for maps of bounded variation with values in $S^1$, Calc. Var., 1 (1993), pp. 87--121.
30.
M. Giaquinta and D. Mucci, The BV-energy of maps into a manifold: Relaxation and density results, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2006), pp. 483--548.
31.
M. Giaquinta and D. Mucci, Maps of bounded variation with values into a manifold: Total variation and relaxed energy, Pure Appl. Math. Q., 3 (2007), pp. 513--538.
32.
P. Grohs, H. Hardering, and O. Sander, Optimal a priori discretization error bounds for geodesic finite elements, Found. Comput. Math., 15 (2015), pp. 1357--1411.
33.
P. Grohs and S. Hosseini, $\varepsilon$-subgradient Algorithms for Locally Lipschitz Functions on Riemannian Manifolds, Adv. Comput. Math., to appear.
34.
P. Grohs and M. Sprecher, Total Variation Regularization by Iteratively Reweighted Least Squares on Hadamard Spaces and the Sphere, preprint, 2014-39, ETH Zürich, 2014.
35.
P. Grohs and J. Wallner, Interpolatory wavelets for manifold-valued data, Appl. Comput. Harmon. Anal., 27 (2009), pp. 325--333.
36.
W. Hinterberger and O. Scherzer, Variational methods on the space of functions of bounded Hessian for convexification and denoising, Computing, 76 (2006), pp. 109--133.
37.
M. Hintermüller and T. Wu, Robust principal component pursuit via inexact alternating minimization on matrix manifolds, J. Math. Imaging Vision, 51 (2014), pp. 361--377.
38.
J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Hel., 70 (1995), pp. 659--673.
39.
J. Jost, Nonpositive curvature: Geometric and Analytic Aspects, Lectures Math. ETH Zürich, Birkhäuser-Verlag, Basel, Switzerland, 1997.
40.
R. Kimmel and N. Sochen, Orientation diffusion or how to comb a porcupine, J. Visual Comm. Image Represent., 13 (2002), pp. 238--248.
41.
R. Lai and S. Osher, A splitting method for orthogonality constrained problems, J. Sci. Comput., 58 (2014), pp. 431--449.
42.
J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, Berlin, 1997.
43.
S. Lefkimmiatis, A. Bourquard, and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. Image Process., 21 (2012), pp. 983--995.
44.
J. Lellmann, E. Strekalovskiy, S. Koetter, and D. Cremers, Total variation regularization for functions with values in a manifold, in Proceedings of IEEE ICCV 2013, 2013, pp. 2944--2951.
45.
M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), pp. 1579--1590.
46.
M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis., 66 (2006), pp. 5--18.
47.
U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6 (1998), pp. 199--253.
48.
M. Moakher and P. G. Batchelor, Symmetric positive-definite matrices: From geometry to applications and visualization, in Visualization and Processing of Tensor Fields, Springer, Berlin, 2006, pp. 285--298.
49.
J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Ser. A Math., 255 (1962), pp. 2897--2899.
50.
K. Papafitsoros and C. B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vision, 2 (2014), pp. 308--338.
51.
N. Parikh and S. Boyd, Proximity algorithms, Found. Trends Optim., 1 (2013), pp. 123--231.
52.
F. C. Park, J. E. Bobrow, and S. R. Ploen, A Lie group formulation of robot dynamics, Int. J. Robot. Res., 14 (1995), pp. 609--618.
53.
X. Pennec, P. Fillard, and N. Ayache, A Riemannian framework for tensor computing, Int. J. Comput. Vis., 66 (2006), pp. 41--66.
54.
I. U. Rahman, I. Drori, V. C. Stodden, and D. L. Donoho, Multiscale representations for manifold-valued data, Multiscale Model. Simul., 4 (2005), pp. 1201--1232.
55.
M. Raptis and S. Soatto, Tracklet descriptors for action modeling and video analysis, in Proceedings of ECCV 2010, Springer, Berlin, 2010, pp. 577--590.
56.
H. E. Rauch, The global study of geodesics in symmetric and nearly symmetric Riemannian manifolds, Comment. Math. Helvet., 35 (1961), pp. 111--125.
57.
J. G. Rešetnjak, Non-expansive maps in a space of curvature no greater than $K$, Akad. Nauk SSSR, 9 (1968), pp. 918--927.
58.
G. Rosman, M. Bronstein, A. Bronstein, A. Wolf, and R. Kimmel, Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes, in Scale Space and Variational Methods in Computer Vision, Springer, Berlin, 2012, pp. 725--736.
59.
G. Rosman, X.-C. Tai, R. Kimmel, and A. M. Bruckstein, Augmented-Lagrangian regularization of manifold-valued maps, Methods Appl. Anal., 21 (2014), pp. 105--122.
60.
L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259--268.
61.
O. Scherzer, Denoising with higher order derivatives of bounded variation and an application to parameter estimation, Computing, 60 (1998), pp. 1--27.
62.
S. Setzer and G. Steidl, Variational methods with higher order derivatives in image processing, in Proceedings of Approximation XII: San Antonio 2007, 2008, pp. 360--385.
63.
S. Setzer, G. Steidl, and T. Teuber, Infimal convolution regularizations with discrete l1-type functionals, Commun. Math. Sci., 9 (2011), pp. 797--872.
64.
S. Sra and R. Hosseini, Conic geometric optimization on the manifold of positive definite matrices, SIAM J. Optim., 25 (2015), pp. 713--739.
65.
G. Steidl, S. Setzer, B. Popilka, and B. Burgeth, Restoration of matrix fields by second order cone programming, Computing, 81 (2007), pp. 161--178.
66.
E. Strekalovskiy and D. Cremers, Total variation for cyclic structures: Convex relaxation and efficient minimization, in Proceedings of IEEE CVPR 2011, IEEE, 2011, pp. 1905--1911.
67.
E. Strekalovskiy and D. Cremers, Total cyclic variation and generalizations, J. Math. Imaging Vision, 47 (2013), pp. 258--277.
68.
R. Tron, B. Afsari, and R. Vidal, On the convergence of gradient descent for finding the Riemannian center of mass, SIAM J. Control Optim., 51 (2013), pp. 2230--2260.
69.
D. Tschumperlé and R. Deriche, Diffusion tensor regularization with constraints preservation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001, pp. I948--I953.
70.
O. Tuzel, F. Porikli, and P. Meer, Learning on Lie groups for invariant detection and tracking, in Proceedings of CVPR 2008, IEEE, 2008, pp. 1--8.
71.
C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl. 297, Kluwer Academic, Dordrecht, the Netherlands, 1994.
72.
T. Valkonen, K. Bredies, and F. Knoll, Total generalized variation in diffusion tensor imaging, SIAM J. Imaging Sci., 6 (2013), pp. 487--525.
73.
L. Vese and S. Osher, Numerical methods for p-harmonic flows and applications to image processing, SIAM J. Numer. Anal., 40 (2002), pp. 2085--2104.
74.
J. Wang, C. Li, G. Lopez, and J.-C. Yao, Convergence analysis of inexact proximal point algorithms on Hadamard manifolds, J. Global Optim., 61 (2014), pp. 553--573.
75.
J. Weickert, C. Feddern, M. Welk, B. Burgeth, and T. Brox, PDEs for tensor image processing, in Visualization and Processing of Tensor Fields, Springer, Berlin, 2006, pp. 399--414.
76.
A. Weinmann, Interpolatory multiscale representation for functions between manifolds, SIAM J. Math. Anal., 44 (2012), pp. 162--191.
77.
A. Weinmann, L. Demaret, and M. Storath, Total variation regularization for manifold-valued data, SIAM J. Imaging Sci., 7 (2014), pp. 2226--2257.
78.
M. Welk, C. Feddern, B. Burgeth, and J. Weickert, Median filtering of tensor-valued images, in Pattern Recognition, Lecture Notes in Comput. Sci. 2781, Springer, Berlin, 2003, pp. 17--24.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A567 - A597
ISSN (online): 1095-7197

History

Submitted: 4 May 2015
Accepted: 1 December 2015
Published online: 23 February 2016

Keywords

  1. manifold-valued data
  2. second order differences
  3. TV-like methods on manifolds
  4. nonsmooth variational methods
  5. Jacobi fields
  6. Hadamard spaces
  7. proximal mappings
  8. DT-MRI

MSC codes

  1. 65K10
  2. 49Q99
  3. 49M37

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media