Abstract

We give a mathematical framework for exact milestoning, a recently introduced algorithm for mapping a continuous time stochastic process into a Markov chain or semi-Markov process that can be efficiently simulated and analyzed. We generalize the setting of exact milestoning and give explicit error bounds for the error in the milestoning equation for mean first passage times.

Keywords

  1. accelerated molecular dynamics
  2. long-time dynamics
  3. stationary distribution
  4. semi-Markov processes

MSC codes

  1. 82C21
  2. 82C80
  3. 37A30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Akhanjee and J. Rudnick, Disorder induced transition into a one-dimensional Wigner glass, Phys. Rev. Lett., 99 (2007), 236403 (see also arXiv:0706.4462).
2.
R. J. Allen, D. Frenkel, and P. R. ten Wolde, Forward flux sampling-type schemes for simulating rare events: Efficiency analysis, J. Chem. Phys., 124 (2006), 463102.
3.
P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, Clarendon Press, Oxford, UK, 1989.
4.
G. Alsmeyer, On the Markov renewal theorem, Stoch. Process. Appl., 50 (1994), pp. 37--56.
5.
J. M. Bello-Rivas and R. Elber, Exact milestoning, J. Chem. Phys., 142 (2015), 094102.
6.
J. M. Bello-Rivas and R. Elber, Simulations of thermodynamics and kinetics on rough energy landscapes with milestoning, J. Comput. Chem., (2015), to appear.
7.
P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Transition path sampling: Throwing ropes over rough mountain passes, in the dark, Annu. Rev. Phys. Chem., 53 (2002), pp. 291--318.
8.
B. Bouchard, S. Geiss, and E. Gobet, First Time to Exit of a Continuous Itô Process: General Moment Estimates and $L_1$-convergence Rate for Discrete Time Approximations, preprint, arXiv:1307.4247, 2013.
9.
A. E. Cardenas, G. S. Jas, K. Y. DeLeon, W. A. Hegefeld, K. Kuczera, and R. Elber, Unassisted transport of n-Acetyl-l-tryptophanamide through membrane: Experiment and simulation of kinetics, J. Phys. Chem. B, 116 (2012), pp. 2739--2750.
10.
A. E. Cardenas and R. Elber, Enhancing the capacity of molecular dynamics simulations with trajectory fragments, in Innovation in Biomolecular Modeling and Simulation, T. Schlick, ed., Royal Society of Chemistry, London, 2012, Vol. 1, pp. 117--137.
11.
A. E. Cardenas and R. Elber, Computational study of peptide permeation through membrane: Searching for hidden slow variables, Molec. Phys., 111 (2013), pp. 3565--3578.
12.
A. E. Cardenas, R. Shrestha, L. J. Webb, and R. Elber, Membrane permeation of a peptide: It is better to be positive, J. Phys. Chem. B, 119 (2015), pp. 6412--6420.
13.
D. S. Cerutti, R. Duke, P. L. Freddolino, H. Fan, and T. P. Lybrand, A vulnerability in popular molecular dynamics packages concerning Langevin and Andersen dynamics, J. Chem. Theory Comput., 4 (2008), pp. 1669--1680.
14.
J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics, J. Chem. Phys., 126 (2007), 155101.
15.
C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, Transition path sampling and the calculation of rate constants, J. Chem. Phys., 108 (1998), pp. 1964--1977.
16.
C. Dellago, P. G. Bolhuis, and P. L. Geissler, Transition Path Sampling, Adv. Chem. Phys. 123, John Wiley & Sons, New York, 2002.
17.
Y. Dodis, A. Shamir, N. Stephens-Davidowitz, and D. Wichs, How to eat your entropy and have it too---Optimal recovery strategies for compromised RNGs, in Advances in Cryptology CRYPTO 2014 SE-3, Lecture Notes in Comput. Sci. 8617, J. Garay and R. Gennaro, eds., Springer, Berlin, Heidelberg, 2014, pp. 37--54.
18.
R. Douc, E. Moulines, and D. Stoffer, Nonlinear Time Series: Theory, Methods and Applications with R Examples, Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis, Abingdon, UK, 2014.
19.
R. Elber, A milestoning study of the kinetics of an allosteric transition: Atomically detailed simulations of deoxy Scapharca hemoglobin, Biophys. J., 92 (2007), pp. L85--L87.
20.
R. Elber, K. Kuczera, and G. S. Jas, The kinetics of helix unfolding: Molecular dynamics simulations with milestoning, J. Phys. Chem. A, 113 (2009), pp. 7461--7473.
21.
R. Elber and A. West, Atomically detailed simulation of the recovery stroke in myosin by milestoning, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 5001--5005.
22.
A. K. Faradjian and R. Elber, Computing time scales from reaction coordinates by milestoning, J. Chem. Phys., 120 (2004), pp. 10880--10889.
23.
D. Ferré, L. Hervé, and J. Ledoux, Regular perturbation of V-geometrically ergodic Markov chains, J. Appl. Probab., 50 (2013), pp. 184--194.
24.
D. Frenkel and B. Smit, eds., Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., Academic Press, San Diego, 2002.
25.
D. R. Glowacki, E. Paci, and D. V. Shalashilin, Boxed molecular dynamics: Decorrelation time scales and the kinetic master equation, J. Chem. Theory Comput., 7 (2011), pp. 1244--1252.
26.
E. Gobet and S. Menozzi, Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme, Stoch. Process. Appl., 112 (2004), pp. 201--223.
27.
E. Gobet and S. Menozzi, Stopped diffusion processes: Boundary corrections and overshoot, Stoch. Process. Appl., 120 (2010), pp. 130--162 (see also arXiv:0706.4042).
28.
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 2013.
29.
A. T. Hawk, Milestoning with coarse memory, J. Chem. Phys., 138 (2013), 154105.
30.
A. T. Hawk and D. E. Makarov, Milestoning with transition memory, J. Chem. Phys., 135 (2011), 224109.
31.
D. J. Higham, X. Mao, M. Roj, Q. Song, and G. Yin, Mean exit times and the multilevel Monte Carlo method, SIAM/ASA J. Uncertain. Quantif., 1 (2013), pp. 2--18.
32.
G. A. Huber and S. Kim, Weighted-ensemble Brownian dynamics simulations for protein association reactions, Biophys. J., 70 (1996), pp. 97--110.
33.
Intel Corporation, Intel\textsuperscript\textregistered Digital Random Number Generator (DRNG) Software Implementation Guide, 2014; available online from https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide.
34.
G. S. Jas, W. A. Hegefeld, P. Májek, K. Kuczera, and R. Elber, Experiments and comprehensive simulations of the formation of a helical turn, J. Phys. Chem. B, 116 (2012), pp. 6598--6610.
35.
S. Kirmizialtin and R. Elber, Revisiting and computing reaction coordinates with directional milestoning, J. Phys. Chem. A, 115 (2011), pp. 6137--6148.
36.
S. Kirmizialtin, V. Nguyen, K. A. Johnson, and R. Elber, How conformational dynamics of DNA polymerase select correct substrates: Experiments and simulations, Structure, 20 (2012), pp. 618--627.
37.
S. Kirmizialtin, K. A. Johnson, and R. Elber, Enzyme selectivity of HIV reverse transcriptase: Conformations, ligands, and free energy partition, J. Phys. Chem. B, 119 (2015), pp. 11513--11526.
38.
S. M. Kreuzer, R. Elber, and T. J. Moon, Early events in helix unfolding under external forces: A milestoning analysis, J. Phys. Chem. B, 116 (2012), pp. 8662--8691.
39.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools 6, SIAM, Philadelphia, 1998.
40.
P. Májek and R. Elber, Milestoning without a reaction coordinate, J. Chem. Theory Comput., 6 (2010), pp. 1805--1817.
41.
P. Metzner, C. Schütte, and E. Vanden-Eijnden, Transition path theory for Markov jump processes, Multiscale Model. Simul., 7 (2009), pp. 1192--1219; http://doi.org/10.1137/070699500.
42.
G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Sci. Comput., Springer, Berlin, Heidelberg, 2004.
43.
D. Moroni, P. G. Bolhuis, and T. S. Van Erp, Rate constants for diffusive processes by partial path sampling, J. Chem. Phys., 120 (2004), pp. 4055--4065 (see also arXiv:0310466).
44.
K. Müller and L. D. Brown, Location of saddle points and minimum energy paths by a constrained simplex optimization procedure, Theoret. Chim. Acta, 53 (1979), pp. 75--93.
45.
A. P. Ruymgaart, A. E. Cardenas, and R. Elber, MOIL-opt: Energy-conserving molecular dynamics on a GPU/CPU system, J. Chem. Theory Comput., 7 (2011), pp. 3072--3082.
46.
M. Sarich, F. Noé, and C. Schütte, On the approximation quality of Markov state models, Multiscale Model. Simul., 8 (2010), pp. 1154--1177; http://doi.org/10.1137/090764049.
47.
T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Springer, New York, 2010; http://doi.org/10.1007/978-1-4419-6351-2.
48.
D. E. Shaw, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Lerardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. M. Deneroff, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S. C. Wang, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, and K. J. Bowers, Anton, A special-purpose machine for molecular dynamics simulation, Comm. ACM, (2008); http://doi.org/10.1145/1364782.1364802.
49.
J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten, Accelerating molecular modeling applications with graphics processors, J. Comput. Chem., 28 (2007), pp. 2618--2640.
50.
D. W. H. Swenson and P. G. Bolhuis, A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events, J. Chem. Phys., 141 (2014), 044101.
51.
A. Ulitsky and R. Elber, A new technique to calculate steepest descent paths in flexible polyatomic systems, J. Chem. Phys., 92 (1990), 1510.
52.
T. S. van Erp, D. Moroni, and P. G. Bolhuis, A novel path sampling method for the calculation of rate constants, J. Chem. Phys., 118 (2003), pp. 7762--7774.
53.
E. Vanden-Eijnden and M. Venturoli, Exact rate calculations by trajectory parallelization and tilting, J. Chem. Phys., 131 (2009), pp. 1--7 (see also arXiv:0904.3763).
54.
E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber, On the assumptions underlying milestoning, J. Chem. Phys., 129 (2008), 174102.
55.
A. Warmflash, P. Bhimalapuram, and A. R. Dinner, Umbrella sampling for nonequilibrium processes, J. Chem. Phys., 127 (2007), 154112.
56.
A. M. A. West, R. Elber, and D. Shalloway, Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide, J. Chem. Phys., 126 (2007), 145104.
57.
B. W. Zhang, D. Jasnow, and D. M. Zuckerman, The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures, J. Chem. Phys., 132 (2010), 054107.
58.
R. Zwanzig, Diffusion in a rough potential, Proc. Natl. Acad. Sci. USA, 85 (1988), pp. 2029--2030.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 301 - 322
ISSN (online): 1540-3467

History

Submitted: 14 May 2015
Accepted: 16 December 2015
Published online: 3 March 2016

Keywords

  1. accelerated molecular dynamics
  2. long-time dynamics
  3. stationary distribution
  4. semi-Markov processes

MSC codes

  1. 82C21
  2. 82C80
  3. 37A30

Authors

Affiliations

Funding Information

National Institutes of Health http://dx.doi.org/10.13039/100000002 : GM59796
Division of Mathematical Sciences http://dx.doi.org/10.13039/100000121 : 1522398
Welch Foundation http://dx.doi.org/10.13039/100000928 : F-1783

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.