Abstract

The focus of this paper is the approximation of analytic functions on compact intervals from their pointwise values on arbitrary grids. We introduce a new method for this problem based on mapped polynomial approximation. By careful selection of the mapping parameter, we ensure both high accuracy of the approximation and an asymptotically optimal scaling of the polynomial degree with the grid spacing. As we explain, efficient implementation of this method can be achieved using nonuniform fast Fourier transforms. Numerical results demonstrate the efficiency and accuracy of this approach.

Keywords

  1. equispaced nodes
  2. scattered data
  3. spectral methods
  4. Runge phenomenon
  5. analytic functions

MSC codes

  1. 65D15
  2. 65D05
  3. 65T50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. R. Abril-Raymundo and B. Garcia-Archilla, Approximation properties of a mapped Chebyshev method, Appl. Numer. Math., 32 (2000), pp. 119--136.
2.
B. Adcock, Univariate modified Fourier methods for second order boundary value problems, BIT, 49 (2009), pp. 249--280.
3.
B. Adcock, Modified Fourier Expansions: Theory, Construction and Applications, Ph.D. thesis, University of Cambridge, Cambridge, 2010.
4.
B. Adcock and D. Huybrechs, On the resolution power of Fourier extensions for oscillatory functions, J. Comput. Appl. Math., 260 (2014), pp. 312--336.
5.
B. Adcock, D. Huybrechs, and J. Martín-Vaquero, On the numerical stability of Fourier extensions, Found. Comput. Math., 14 (2014), pp. 635--687.
6.
P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer--Verlag, New York, 1995.
7.
J. Boyd and F. Xu, Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and mock-Chebyshev subset interpolation, Appl. Math. Comput., 210 (2009), pp. 158--168.
8.
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Springer--Verlag, Berlin, 1989.
9.
J. P. Boyd, A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds, J. Comput. Phys., 178 (2002), pp. 118--160.
10.
J. P. Boyd and J. R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. I. Single-interval schemes, Commun. Comput. Phys., 5 (2009), pp. 484--497.
11.
O. P. Bruno, Y. Han, and M. M. Pohlman, Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis, J. Comput. Phys., 227 (2007), pp. 1094--1125.
12.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006.
13.
D. Coppersmith and T. J. Rivlin, The growth of polynomials bounded at equally spaced points, SIAM J. Math. Anal., 23 (1992), pp. 970--983.
14.
B. Costa, D. W.-S., and A. Simas, Spectral Convergence of Mapped Chebyshev Methods, Technical report, Brown University, Providence, RI, 2003.
15.
B. Costa, D. W.-S., and A. Simas, Spatial resolution properties of mapped spectral Chebyshev methods, in Recent Progress in Scientific Computing: Proceedings of SCPDE05, Science Press, Beiging, 2007, pp. 179--188.
16.
W. S. Don and A. Solomonoff, Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique, SIAM J. Sci. Comput., 18 (1997), pp. 1040--1055.
17.
A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993), pp. 1368--1393.
18.
A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, II, Appl. Comput. Harmon. Anal., 2 (1995), pp. 85--100.
19.
K. T. Elgindy and K. A. Smith-Miles, Optimal Gegenbauer quadrature over arbitrary integration nodes, J. Comput. Appl. Math., 242 (2013), pp. 82--106.
20.
J. A. Fessler and B. P. Sutton, Nonuniform fast Fourier transforms using min-max interpolation, IEEE Trans. Signal Process., 51 (2003), pp. 560--574.
21.
M. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), pp. 315--331.
22.
D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev., 39 (1997), pp. 644--668.
23.
D. Gottlieb, C.-W. Shu, A. Solomonoff, and H. Vandeven, On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function., J. Comput. Appl. Math., 43 (1992), pp. 91--98.
24.
N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM J. Numer. Anal., 46 (2008), pp. 930--948.
25.
J. Keiner, S. Kunis, and D. Potts, Using NFFT 3---a software library for various nonequispaced fast Fourier transforms, ACM Trans. Math. Software, 36 (2009), 19.
26.
D. Kosloff and H. Tal-Ezer, A modified Chebyshev pseudospectral method with an $\mathcal{O}(N^{-1})$ time step restriction, J. Comput. Phys., 104 (1993), pp. 457--469.
27.
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43--71.
28.
R. Platte, A windowed Fourier method for approximation of non-periodic functions on equispaced nodes, in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, R.M. Kirby, M. Berzins, and J.S. Hethaven, ed., Springer, Chan, Switzerland, 2015, pp. 405--413.
29.
R. Platte and G. Klein, A Comparison of Methods for Recovering Analytic Functions from Equispaced Samples, manuscript.
30.
R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Rev., 53 (2011), pp. 308--318.
31.
D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto and P. Ferreira, eds., Birkhäuser, Boston, 2001, pp. 249--274.
32.
E. A. Rakhmanov, Bounds for polynomials with a unit discrete norm, Ann. Math., 165 (2007), pp. 55--88.
33.
S. C. Reddy, J. A. C. Weideman, and G. F. Norris, On a modified Chebyshev pseudospectral method, technical report, Oregon State University, Corvallis, OR, 1998.
34.
R. A. Renaut and Y. Su, Evaluation of Chebyshev pseudospectral methods for third order differential equations, Numer. Algorithms, 16 (1997), pp. 255--281.
35.
G. Steidl, A note on fast Fourier transforms for nonequispaced grids, Adv. Comput. Math., 9 (1998), pp. 337--353.
36.
H. Tal-Ezer, Nonperiodic trigonometric polynomial approximation, J. Sci. Comput., 60 (2014), pp. 345--362.
37.
L. N. Trefethen, Approximation Theory and Aproximation Practice, Appl. Math. 128, SIAM, Philadelphia, 2013.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2256 - 2281
ISSN (online): 1095-7170

History

Submitted: 1 June 2015
Accepted: 2 May 2016
Published online: 19 July 2016

Keywords

  1. equispaced nodes
  2. scattered data
  3. spectral methods
  4. Runge phenomenon
  5. analytic functions

MSC codes

  1. 65D15
  2. 65D05
  3. 65T50

Authors

Affiliations

Funding Information

Alfred P. Sloan Foundationhttp://dx.doi.org/10.13039/100000879
Air Force Office of Scientific Researchhttp://dx.doi.org/10.13039/100000181: FA9550-15-1-015
National Science Foundationhttp://dx.doi.org/10.13039/100000001: DMS1522639

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media