Abstract

We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables us to prove a weak-$BV$ estimate for the numerical approximation under a strengthened CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical $\mathcal{O}(h^{1/4})$ estimate in $L^2$ under this strengthened CFL condition.

Keywords

  1. hyperbolic systems
  2. finite volume scheme
  3. relative entropy
  4. error estimate

MSC codes

  1. 35L65
  2. 65M08
  3. 65M12
  4. 65M15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Bardos, F. Golse, and C. D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), pp. 667--753.
2.
F. Berthelin, A. E. Tzavaras, and A. Vasseur, From discrete velocity Boltzmann equations to gas dynamics before shocks, J. Stat. Phys., 135 (2009), pp. 153--173.
3.
F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., 36 (2005), pp. 1807--1835.
4.
D. Bouche, J.-M. Ghidaglia, and F. P. Pascal, An optimal error estimate for upwind finite volume methods for nonlinear hyperbolic conservation laws, Appl. Numer. Math., 61 (2011), pp. 1114--1131.
5.
F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Front. Math., Birkhäuser Verlag, Basel, 2004.
6.
F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), pp. 2847--2870.
7.
C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 129--156.
8.
C. Chainais-Hillairet, Second-order finite-volume schemes for a non-linear hyperbolic equation: Error estimate, Math. Methods Appl. Sci., 23 (2000), pp. 467--490.
9.
C. Chainais-Hillairet and S. Champier, Finite volume schemes for nonhomogeneous scalar conservation laws: Error estimate, Numer. Math., 88 (2001), pp. 607--639.
10.
S. Champier, T. Gallouët, and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math., 66 (1993), pp. 139--157.
11.
B. Cockburn, F. Coquel, and P. G. LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp., 63 (1994), pp. 77--103.
12.
F. Coquel, E. Godlewski, and N. Seguin, Relaxation of fluid systems, Math. Models Methods Appl. Sci., 22 (2012), 1250014.
13.
F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal., 35 (1998), pp. 2223--2249.
14.
C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), pp. 167--179.
15.
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Grundlehren Math. Wiss. 325 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2010.
16.
C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), pp. 1417--1436.
17.
C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), pp. 225--260.
18.
F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations, Arch. Ration. Mech. Anal., 199 (2011), pp. 229--268.
19.
B. Després, An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids, SIAM J. Numer. Anal., 42 (2004), pp. 484--504.
20.
R. J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), pp. 137--188.
21.
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), pp. 223--270.
22.
R. Eymard, T. Gallouët, M. Ghilani, and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume scheme, IMA J. Numer. Anal., 18 (1998), pp. 563--594.
23.
E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 204 (2012), pp. 683--706.
24.
K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954), pp. 345--392.
25.
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci. 118, Springer-Verlag, New York, 1996.
26.
S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), pp. 271--306 (in Russian).
27.
B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 169 (2003), pp. 89--117.
28.
A. Harten, P. D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1983), pp. 35--61.
29.
A. Hiltebrand and Si. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., 126 (2014), pp. 103--151.
30.
C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), pp. 1--26.
31.
V. Jovanović and C. Rohde, Finite-volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates, Numer. Methods Partial Differential Equations, 21 (2005), pp. 104--131.
32.
V. Jovanović and C. Rohde, Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws, SIAM J. Numer. Anal., 43 (2006), pp. 2423--2449.
33.
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), pp. 181--205.
34.
D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes, Math. Comp., 69 (2000), pp. 25--39.
35.
S. N. Kruzhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), pp. 228--255 (in Russian).
36.
N. N. Kuznetsov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation, Ž. Vyčisl. Mat. i Mat. Fiz., 16 (1976), pp. 1489--1502, 1627 (in Russian).
37.
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), pp. 537--566.
38.
N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations, Arch. Ration. Mech. Anal., 201 (2011), pp. 271--302.
39.
T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM Res. Appl. Math. 32, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
40.
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models and Vol. 2, Compressible Models, Oxford Lecture Ser. Math. Appl. 3 and 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996, 1998.
41.
B. Merlet and J. Vovelle, Error estimate for finite volume scheme, Numer. Math., 106 (2007), pp. 129--155.
42.
V. V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1 (1961), pp. 267--279.
43.
L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 705--744.
44.
A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, RAIRO Modél. Math. Anal. Numér., 25 (1991), pp. 749--782.
45.
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comp., 49 (1987), pp. 91--103.
46.
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12 (2003), pp. 451--512.
47.
A. E. Tzavaras, Relative entropy in hyperbolic relaxation, Commun. Math. Sci., 3 (2005), pp. 119--132.
48.
B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32 (1979), pp. 101--136.
49.
J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes, RAIRO Modéél. Math. Anal. Numér., 28 (1994), pp. 267--295.
50.
H.-T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22 (1991), pp. 63--80.
51.
W. A. Yong, Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal., 172 (2004), pp. 247--266.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1263 - 1287
ISSN (online): 1095-7170

History

Submitted: 9 June 2015
Accepted: 4 February 2016
Published online: 21 April 2016

Keywords

  1. hyperbolic systems
  2. finite volume scheme
  3. relative entropy
  4. error estimate

MSC codes

  1. 35L65
  2. 65M08
  3. 65M12
  4. 65M15

Authors

Affiliations

Funding Information

Centre National de la Recherche Scientifique http://dx.doi.org/10.13039/501100004794
Commissariat à l'Énergie Atomique et aux Énergies Alternatives http://dx.doi.org/10.13039/501100006489
Université Pierre et Marie Curie http://dx.doi.org/10.13039/501100005737

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media