Abstract

The evaluation complexity of general nonlinear, possibly nonconvex, constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem's functions and their first $p$ derivatives. This is achieved by using a two-phase algorithm inspired by Cartis, Gould, and Toint [SIAM J. Optim., 21 (2011), pp. 1721--1739; SIAM J. Optim., 23 (2013), pp. 1553--1574]. It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the $\epsilon$-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers.

Keywords

  1. nonlinear programming
  2. complexity
  3. approximate KKT point

MSC codes

  1. 90C30
  2. 65K05
  3. 49M05
  4. 49M37
  5. 90C60
  6. 68Q25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Andreani, G. Haeser, and J. M. Martínez, On sequential optimality conditions for smooth constrained optimization, Optimization, 60 (2011), pp. 627--641.
2.
R. Andreani, J. M. Martínez, and B. F. Svaiter, A new sequential optimality condition for constrained optimization and algorithmic consequences, SIAM J. Optim., 20 (2010), pp. 3533--3554.
3.
S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini, and Ph. L. Toint, Convergence of a regularized Euclidean residual algorithm for nonlinear least-squares, SIAM J. Numer. Anal., 48 (2010), pp. 1--29.
4.
E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and Ph. L. Toint, Worst-Case Evaluation Complexity for Unconstrained Nonlinear Optimization Using High-Order Regularized Models, Technical Report naXys-05-2015, Namur Center for Complex Systems (naXys), University of Namur, Namur, Belgium, 2015.
5.
E. G. Birgin and J. M. Martínez, Practical Augmented Lagrangian Methods for Constrained Optimization, SIAM, Philadelphia, 2014.
6.
J. Bolte, A. Danilidis, O. Ley, and L. Mazet, Characterizations of Łojasiewicz inequalities: Subgradient flows, talweg, convexity, Trans. Amer. Math. Soc., 362 (2010), pp. 3319--3363.
7.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems, SIAM J. Optim., 20 (2010), pp. 2833--2852.
8.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, Adaptive cubic overestimation methods for unconstrained optimization. Part II: Worst-case function-evaluation complexity, Math. Program. Ser. A, 130 (2011), pp. 295--319.
9.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming, SIAM J. Optim., 21 (2011), pp. 1721--1739.
10.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity, IMA J. Numer. Anal., 32 (2012), pp. 1662--1695.
11.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization, SIAM J. Optim., 22 (2012), pp. 66--86.
12.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the complexity of finding first-order critical points in constrained nonlinear optimization, Math. Program. Ser. A, 144 (2013), pp. 93--106.
13.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization, SIAM J. Optim., 23 (2013), pp. 1553--1574.
14.
C. Cartis, N. I. M. Gould, and Ph. L. Toint, Corrigendum: On the Complexity of Finding First-Order Critical Points in Constrained Nonlinear Optimization, Technical Report RAL-P-2014-013, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2014.
15.
C. Cartis, Ph. R. Sampaio, and Ph. L. Toint, Worst-case complexity of first-order non-monotone gradient-related algorithms for unconstrained optimization, Optimization, 64 (2015), pp. 1349--1361.
16.
J. P. Dussault, Simple Unified Convergence Proofs for the Trust-Region and a New ARC Variant, Technical report, University of Sherbrooke, Sherbrooke, QC, Canada, 2015.
17.
G. N. Grapiglia, J. Yuan, and Y. Yuan, On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization, Math. Program. Ser. A, 152 (2015), pp. 491--520.
18.
S. Łojasiewicz, Ensembles semi-analytiques, Technical report, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, 1965; available online at http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf.
19.
Yu. Nesterov, Introductory Lectures on Convex Optimization, Appl. Optim., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
20.
Yu. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global performance, Math. Program. Ser. A, 108 (2006), pp. 177--205.
21.
L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to SQP methods, SIAM J. Optim., 10 (2000), pp. 963--981.
22.
R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), pp. 183--238.
23.
L. N. Vicente, Worst case complexity of direct search, EURO J. Comput. Optim., 1 (2013), pp. 143--153.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 951 - 967
ISSN (online): 1095-7189

History

Submitted: 20 July 2015
Accepted: 19 January 2016
Published online: 12 April 2016

Keywords

  1. nonlinear programming
  2. complexity
  3. approximate KKT point

MSC codes

  1. 90C30
  2. 65K05
  3. 49M05
  4. 49M37
  5. 90C60
  6. 68Q25

Authors

Affiliations

Funding Information

Fundação de Amparo à Pesquisa do Estado de São Paulo : 2010/10133-0, 2013/03447-6, 2013/05475-7, 2013/07375-0, 2013/23494-9
Fonds De La Recherche Scientifique - FNRS http://dx.doi.org/10.13039/501100002661 : (bilateral grant)
Conselho Nacional de Desenvolvimento Científico e Tecnológico http://dx.doi.org/10.13039/501100003593 : 304032/2010-7, 309517/2014-1, 303750/2014-6, 490326/2013-7

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media