Abstract

We study a problem of finding an optimal stopping strategy to liquidate an asset with unknown drift. Taking a Bayesian approach, we model the initial beliefs of an individual about the drift by allowing an arbitrary probability distribution to characterize the uncertainty about the drift parameter. Filtering theory is used to describe the evolution of the posterior beliefs about the drift once the price process is being observed. An optimal stopping time is determined as the first passage time of the posterior mean below a monotone boundary, which can be characterized as the unique solution to a nonlinear integral equation. We also study monotonicity properties with respect to the prior distribution and the asset volatility.

Keywords

  1. optimal liquidation
  2. incomplete information
  3. sequential analysis

MSC codes

  1. 60G40
  2. 91G80

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stoch. Model. Appl. Probab. 60, Springer, New York, 2009.
2.
K. Back, Incomplete and asymmetric information in asset pricing theory, in Stochastic Methods in Finance, Lecture Notes in Math. 1856, Springer, New York, 2004, pp. 1--25.
3.
M. Beibel and H. R. Lerche, A new look at optimal stopping problems related to mathematical finance, Statist. Sinica, 7 (1997), pp. 93--108.
4.
T. Björk, M. H. A. Davis, and C. Landén, Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), pp. 371--399.
5.
N. Bush, B. M. Hambly, H. Haworth, L. Jin, and C. Reisinger, Stochastic evolution equations in portfolio credit modelling, SIAM J. Financial Math., 2 (2011), pp. 627--664.
6.
J.-P. Décamps, T. Mariotti, and S. Villeneuve, Investment timing under incomplete information, Math. Oper. Res., 30 (2005), pp. 472--500.
7.
M. Dothan and D. Feldman, Equilibrium interest rates and multiperiod bonds in a partially observable economy, J. Finance, 41 (1986), pp. 369--382.
8.
J. du Toit and G. Peskir, Selling a stock at the ultimate maximum, Ann. Appl. Probab., 19 (2009), pp. 983--1014.
9.
E. Ekström and B. Lu, Optimal selling of an asset under incomplete information, Int. J. Stoch. Anal., 2011 (2011), 543590.
10.
E. Ekström and J. Tysk, Convexity theory for the term structure equation, Finance Stoch., 12 (2008), pp. 117--147.
11.
J. Evans, V. Henderson, and D. Hobson, Optimal timing for an indivisible asset sale, Math. Finance, 18 (2008), pp. 545--567.
12.
P. Gapeev, Pricing of perpetual American options in a model with partial information, Int. J. Theor. Appl. Finance, 15 (2012), 1250010.
13.
V. Henderson and D. Hobson, An explicit solution for an optimal stopping/optimal control problem which models an asset sale, Ann. Appl. Probab., 18 (2008), pp. 1681--1705.
14.
S. Jacka, Optimal stopping and the American put, Math. Finance, 1 (1991), pp. 1--14.
15.
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in Math. 113, Springer-Verlag, New York, 1991.
16.
I. Karatzas and S. Shreve, Methods of Mathematical Finance, Appl. Math. 39, Springer-Verlag, New York, 1998.
17.
B. Lu, Optimal selling of an asset with jumps under incomplete information, Appl. Math. Finance, 20 (2013), pp. 599--610.
18.
P. Lakner, Utility maximization with partial information, Stochastic Process. Appl., 56 (1995), pp. 247--249.
19.
P. Lakner, Optimal trading strategy for an investor: The case of partial information, Stochastic Process. Appl., 76 (1998), pp. 77--97.
20.
M. Monoyios, Optimal investment and hedging under partial and inside information, in Advanced Financial Modelling, Radon Ser. Comput. Appl. Math. 8, de Cruyter, Berlin, 2009, pp. 371--410.
21.
M. Monoyios and A. Ng, Optimal exercise of an executive stock option by an insider, Int. J. Theor. Appl. Finance, 14 (2011), pp. 83--106.
22.
B. Ø ksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed., Springer, New York, 2007.
23.
G. Peskir, On the American option problem, Math. Finance, 15 (2005), pp. 169--181.
24.
G. Peskir, A change-of-variable formula with local time on curves, J. Theoret. Probab., 18 (2005), pp. 499--535.
25.
G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures Math., ETH Zürich, Birkhäuser Verlag, Basel, 2006.
26.
P. E. Protter, Stochastic Integration and Differential Equations, Version 2.1, Stoch. Model. Appl. Probab. 21, Springer, New York, 2005.
27.
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren Math. Wiss. 293, Springer-Verlag, Berlin, 1999.
28.
L. C. G. Rogers, Optimal Investment, Springer Briefs Quantitative Finance, Springer, New York, 2013.
29.
A. Ziegler, Incomplete Information and Heterogeneous Beliefs in Continuous-Time Finance, Springer, 2003.

Information & Authors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics
Pages: 357 - 381
ISSN (online): 1945-497X

History

Submitted: 31 July 2015
Accepted: 4 April 2016
Published online: 25 May 2016

Keywords

  1. optimal liquidation
  2. incomplete information
  3. sequential analysis

MSC codes

  1. 60G40
  2. 91G80

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media