Abstract

We consider a variational model for two interacting species (or phases), subject to cross and self attractive forces. We show existence and several qualitative properties of minimizers. Depending on the strengths of the forces, different behaviors are possible: phase mixing or phase separation with nested or disjoint phases. In the case of Coulomb interaction forces, we characterize the ground state configurations.

Keywords

  1. nonlocal interactions
  2. variational methods
  3. Coulomb interactions
  4. shape optimization

MSC codes

  1. 49J45
  2. 82B24
  3. 49Q10
  4. 49K10
  5. 70G75

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II, J. Math. Pures Appl., 69 (1990), pp. 307--333.
2.
M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on $\R^N$, SIAM J. Math. Anal., 46 (2014), pp. 2310--2349.
3.
M. Bonacini, H. Knüpfer, and M. Röger, Optimal distribution of oppositely charged phases: Perfect screening and other properties, SIAM J. Math. Anal., 48 (2016), pp. 1128--1154.
4.
A. Burchard, R. Choksi, I. Topaloglu, Nonlocal shape optimization via interactions of attractive and repulsive potentials, preprint 2016.
5.
J. A. Can͂izo, J. A. Carrillo, and F. S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 217 (2015), pp. 1197--1217.
6.
E. A. Carlen and F. Maggi, Stability for the Brunn-Minkowski and Riesz Rearrangement Inequalities, with Applications to Gaussian Concentration and Finite Range Non-local Isoperimetry, preprint 2015.
7.
E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz, and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition, Nonlinearity, 16 (2003), pp. 1075--1105.
8.
J. A. Carrillo, M. Chipot, and Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372, (2014).
9.
J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepc̆ev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), pp. 229--271.
10.
R. Choksi, R.C. Fetecau, and I. Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. H. Poincaré Anal. Non Linéalre, 32 (2015), pp. 1283--1305.
11.
E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics: Modeling, Simulation and Applications, Springer, Berlin, 2014.
12.
A. Di Castro, M. Novaga, B. Ruffini, and E. Valdinoci, Nonlocal quantitative isoperimetric inequalities, Calc. Var. Partial Differential Equations, 54 (2015), pp. 2421--2464.
13.
M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species, Nonlinearity, 26 (2013), pp. 2777--2808.
14.
C. Escudero, F. Maciá, and J.J.L. Velázquez, Two-species-coagulation approach to consensus by group level interactions, Phys. Rev. E, 82 (2010), 016113.
15.
A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys., 336 (2015), pp. 441--507.
16.
E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math. 14, AMS, Providence, RI, 2001.
17.
V. Julin, Isoperimetric problem with a Coulomb repulsive term, Indiana Univ. Math. J., 63 (2014), pp. 77--89.
18.
P. Kevrevidis, A. G. Stefanov, and H. Xu, Traveling waves for the mass in mass model of granular chains, Lett. Math. Phys., 106 (2016), pp. 1067--1088.
19.
H. Knüpfer and C. Muratov, On an isoperimetric problem with a competing non-local term. I. The planar case, Commun. Pure Appl. Math., 66 (2013), pp. 1129--1162.
20.
H. Knüpfer and C. Muratov, On an isoperimetric problem with a competing non-local term. II. The general case, Commun. Pure Appl. Math., 67 (2014), pp. 1974--1994.
21.
T. Kolokolnikov, Y. Huang, and M. Pavlovski, Singular patterns for an aggregation model with a confining potential, Phys. D, 260 (2013), pp. 65--76.
22.
T. Kolokolnikov, H. Sun, D. Uminsky, and A. L. Bertozzi, A theory of complex patterns arising from 2D particle interactions, Phys. Rev. E, 84 (2011), 015203
23.
N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wisse. 180, Springer-Verlag, Heidelberg, 1972.
24.
H. Levine, E. Ben-Jacob, I. Cohen, and W.-J. Rappel, Swarming patterns in Microorganisms: Some new modeling results, Proceedings of IEEE CDC, 2006, pp. 5073--5077.
25.
T. Liu, M. L. K. Langston, D. Li, J. M. Pigga, C. Pichon, A M. Todea, and A. Müller, Self-recognition among different polyprotic macroions during assembly processes in dilute solution, Science, 331 (2011), pp. 1590--1592.
26.
J. Lu and F. Otto, Nonexistence of minimizers for Thomas-Fermi-Dirac-von Weizsäcker model, Commun. Pure Appl. Math., 67 (2014), pp. 1605--1617.
27.
A. Mackey, T. Kolokolnikov, and A. L. Bertozzi, Two-species particle aggregation and stability of co-dimension one solutions, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 1411--1436.
28.
A. Magni and M. Novaga, A note on non lower semicontinuous perimeter functionals on partitions, Netw. Heterog. Media, 11 (2016), pp. 501--508.
29.
B. Maury, A. Roudneff-Chupin, F. Santambrogio, and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), pp. 485--519.
30.
X. Ren and J. Wei, A double bubble assembly as a new phase of a ternary inhibitory system, Arch. Ration. Mech. Anal., 215 (2015), pp. 967--1034.
31.
F. Riesz, Sur une inégalité intégrale, J. Lond. Math. Soc., 5 (1930), pp. 162--168.
32.
R. Simione, D. Slepcev, and I. Topaloglu, Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., 159 (2015), pp. 972--986.
33.
J. D. van der Waals and I. Verhandelingen, Kon. Akad. Wet. Amsterdam 20, 1880; II Théorie moléculaire d'une substance composée de deux matiéres différentes, Arch. Néerl., 24 (1891).

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 3412 - 3443
ISSN (online): 1095-7154

History

Submitted: 5 August 2015
Accepted: 1 July 2016
Published online: 22 September 2016

Keywords

  1. nonlocal interactions
  2. variational methods
  3. Coulomb interactions
  4. shape optimization

MSC codes

  1. 49J45
  2. 82B24
  3. 49Q10
  4. 49K10
  5. 70G75

Authors

Affiliations

Funding Information

SFB Transregio: 109
John von Neumann Professorship of Tum
University of Pisa: PRA-2015-0017
DAAD

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media