Abstract

In this paper, we suggest a new heterogeneous multiscale method (HMM) for the time-harmonic Maxwell equations in locally periodic media. The method is constructed by using a divergence-regularization in one of the cell problems. This allows us to introduce fine-scale correctors that are not subject to a cumbersome divergence-free constraint and which can hence easily be implemented. To analyze the method, we first revisit classical homogenization theory for time-harmonic Maxwell equations and derive a new homogenization result that makes use of the divergence-regularization in the two-scale homogenized equation. We then show that the HMM is equivalent to a discretization of this equation. In particular, writing both problems in a fully coupled two-scale formulation is the crucial starting point for a corresponding numerical analysis of the method. With this approach we are able to prove rigorous a priori error estimates in the $\mathbf{H}({curl})$- and the $H^{-1}$-norm, and we derive reliable and efficient localized residual-based a posteriori error estimates. Numerical experiments are presented to verify the a priori convergence results.

Keywords

  1. multiscale method
  2. finite elements
  3. Maxwell's equations
  4. homogenization
  5. two-scale convergence

MSC codes

  1. 35B27
  2. 65N15
  3. 65N30
  4. 78M40

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), pp. 447--459.
2.
A. Abdulle and M. J. Grote, Finite element heterogeneous multiscale method for the wave equation, Multiscale Model. Simul., 9 (2011), pp. 766--792.
3.
A. Abdulle, M. J. Grote, and C. Stohrer, Finite element heterogeneous multiscale method for the wave equation: Long-time effects, Multiscale Model. Simul., 12 (2014), pp. 1230--1257.
4.
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518.
5.
Y. Amirat and V. Shelukhin, Homogenization of time harmonic Maxwell equations and the frequency dispersion effect, J. Math. Pures Appl. (9), 95 (2011), pp. 420--443.
6.
D. Arjmand and O. Runborg, Analysis of heterogeneous multiscale methods for long time wave propagation problems, Multiscale Model. Simul., 12 (2014), pp. 1135--1166.
7.
I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1970/1971), pp. 322--333.
8.
P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE, Computing, 82 (2008), pp. 121--138.
9.
P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework, Computing, 82 (2008), pp. 103--119.
10.
R. Beck, R. Hiptmair, R. H. Hoppe, and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 159--182.
11.
L. Cao, Y. Zhang, W. Allegretto, and Y. Lin, Multiscale asymptotic method for Maxwell's equations in composite materials, SIAM J. Numer. Anal., 47 (2010), pp. 4257--4289.
12.
V. T. Chu and V. H. Hoang, Homogenization Error for Two Scale Maxwell Equations, arXiv:1512.02788, 2015.
13.
P. Ciarlet, Jr. and C. Stohrer, Finite-element heterogeneous multiscale method for the Helmholtz equation, C. R. Math. Acad. Sci. Paris, 352 (2014), pp. 755--760.
14.
P. Ciarlet, S. Fliss, and C. Stohrer, On the Approximation of Electromagnetic Fields by Edge Finite Elements. Part 2: A Heterogeneous Multiscale Method for Maxwell's Equations, preprint, 2016, https://hal.inria.fr/hal-01364782.
15.
P. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), pp. 77--84.
16.
M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151 (2000), pp. 221--276.
17.
H. Duan, S. Li, R. C. E. Tan, and W. Zheng, A delta-regularization finite element method for a double curl problem with divergence-free constraint, SIAM J. Numer. Anal., 50 (2012), pp. 3208--3230.
18.
W. E, P. Ming, and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), pp. 121--156.
19.
A. L. Efros and A. L. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability, Solid State Communications, 129 (2004), pp. 643--647.
20.
B. Engquist and W. E, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87--132.
21.
B. Engquist and W. E, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 44, Springer, Berlin, 2005, pp. 89--110.
22.
B. Engquist, H. Holst, and O. Runborg, Multi-scale methods for wave propagation in heterogeneous media, Commun. Math. Sci., 9 (2011), pp. 33--56.
23.
B. Engquist, H. Holst, and O. Runborg, Multiscale methods for wave propagation in heterogeneous media over long time, in Numerical Analysis of Multiscale Computations, Lect. Notes Comput. Sci. Eng. 82, Springer, Berlin, 2012, pp. 167--186.
24.
B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numer., 12 (2003), pp. 181--266.
25.
P. Fernandes and M. Raffetto, Existence, uniqueness and finite element approximation of the solution of time-harmonic electromagnetic boundary value problems involving metamaterials, COMPEL, 24 (2005), pp. 1450--1469.
26.
A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul., 5 (2006), pp. 996--1043.
27.
P. Henning, Skript zur Vorlesung Homogenisierung und Mehrskalenmodellierung, http://www.wwu.de/math/num/Vorlesungen/Mehrskalen_SS12/Skript/running_skript.pdf (2012).
28.
P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), pp. 601--629.
29.
P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Netw. Heterog. Media, 5 (2010), pp. 711--744.
30.
P. Henning, M. Ohlberger, and B. Verfürth, Analysis of multiscale methods for time-harmonic Maxwell's equations, Proc. Appl. Math. Mech., 16 (2016), pp 559--560.
31.
L. Jiang and Y. Efendiev, A priori estimates for two multiscale finite element methods using multiple global fields to wave equations, Numer. Methods Partial Differential Equations, 28 (2012), pp. 1869--1892.
32.
L. Jiang, Y. Efendiev, and V. Ginting, Analysis of global multiscale finite element methods for wave equations with continuum spatial scales, Appl. Numer. Math., 60 (2010), pp. 862--876.
33.
J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Princeton University Press, Princeton, NJ, 2008; also available online at http://ab-initio.mit.edu/book/photonic-crystals-book.pdf.
34.
D. Lukkassen, G. Nguetseng, and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), pp. 35--86.
35.
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B, 65 (2002), 201104.
36.
R. Milk and F. Schindler, Dune-GDT 2015, doi:10.5281/zenodo.35389.
37.
P. Monk, Finite Element Methods for Maxwell's Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003.
38.
M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), pp. 88--114.
39.
A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handed material, Phys. B, 338 (2003), pp. 333--337.
40.
J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77 (2008), pp. 633--649.
41.
J. Schöberl, Numerical Methods for Maxwell Equations, 2009, http://www.asc.tuwien.ac.at/~schoeberl/wiki/lva/notes/maxwell.pdf.
42.
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and negative refractive index, Science, 305 (2004), pp. 788--792.
43.
R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2013.
44.
A. Visintin, Two-scale convergence of first-order operators, Z. Anal. Anwend., 26 (2007), pp. 133--164.
45.
N. Wellander, Homogenization of the Maxwell equations. Case I. Linear theory, Appl. Math., 46 (2001), pp. 29--51.
46.
N. Wellander, The two-scale Fourier transform approach to homogenization; periodic homogenization in Fourier space, Asymptot. Anal., 62 (2009), pp. 1--40.
47.
N. Wellander and G. Kristensson, Homogenization of the Maxwell equations at fixed frequency, SIAM J. Appl. Math., 64 (2003), pp. 170--195.
48.
S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computation, Ph.D. thesis, Johannes Kepler Universität Linz, 2006.
49.
Y. Zhang, L.-Q. Cao, and Y.-S. Wong, Multiscale computations for 3D time-dependent Maxwell's equations in composite materials, SIAM J. Sci. Comput., 32 (2010), pp. 2560--2583.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 3493 - 3522
ISSN (online): 1095-7170

History

Submitted: 11 September 2015
Accepted: 9 September 2016
Published online: 1 December 2016

Keywords

  1. multiscale method
  2. finite elements
  3. Maxwell's equations
  4. homogenization
  5. two-scale convergence

MSC codes

  1. 35B27
  2. 65N15
  3. 65N30
  4. 78M40

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : OH 98/6-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media