Abstract

It is shown that for a parabolic problem with maximal $L^p$-regularity (for $1<p<\infty$), the time discretization by a linear multistep method or Runge--Kutta method has maximal $\ell^p$-regularity uniformly in the stepsize if the method is A-stable (and satisfies minor additional conditions). In particular, the implicit Euler method, the Crank--Nicolson method, the second-order backward difference formula (BDF), and the Radau IIA and Gauss Runge--Kutta methods of all orders preserve maximal regularity. The proof uses Weis' characterization of maximal $L^p$-regularity in terms of $R$-boundedness of the resolvent, a discrete operator-valued Fourier multiplier theorem by Blunck, and generating function techniques that have been familiar in the stability analysis of time discretization methods since the work of Dahlquist. The A($\alpha$)-stable higher-order BDF methods have maximal $\ell^p$-regularity under an $R$-boundedness condition in a larger sector. As an illustration of the use of maximal regularity in the error analysis of discretized nonlinear parabolic equations, it is shown how error bounds are obtained without using any growth condition on the nonlinearity or for nonlinearities having singularities.

Keywords

  1. maximal regularity
  2. A-stability
  3. multistep methods
  4. Runge--Kutta methods
  5. parabolic equations

MSC codes

  1. 65M12
  2. 65L04

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Academic Press, Amsterdam, 2003.
2.
R. P. Agarwal, C. Cuevas, and C. Lizama, Regularity of Difference Equations on Banach Spaces. Springer, Berlin, International Publishing, Switzerland, 2014.
3.
G. Akrivis, B. Li, and Ch. Lubich, Combining Maximal Regularity and Energy Estimates for Time Discretizations of Quasilinear Parabolic Equations, preprint, arXiv:1606.03688, 2016.
4.
G. Akrivis, Ch. Makridakis, and R. H. Nochetto, Galerkin and Runge--Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence, Numer. Math., 118 (2011), pp. 429--456.
5.
F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 10, Springer, New York, 2006.
6.
H. Amann, Linear and Quasilinear Parabolic Problems. Volume I, Abstract Linear Theory, Birkhäuser Boston, Boston, MA, 1995.
7.
A. Ashyralyev, S. Piskarev, and L. Weis, On well-posedness of difference schemes for abstract parabolic equations in $L_p([0, T];E)$ spaces, Numer. Funct. Anal. Optim., 23 (2002), pp. 669--693.
8.
A. Ashyralyev and P. E. Sobolevski\u\i, Well-Posedness of Parabolic Difference Equations, Oper. Theory Adv. Appl. 69, Birkhäuser Verlag, Basel, 1994.
9.
D. L. Burkholder, A geometrical condition that implies the existence of certain singular integrals of Banach-space-valued functions, in Proceedings of the Conference on Harmonic Analysis, University of Chicago, 1981.
10.
J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), pp. 163--168.
11.
S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146 (2001), pp. 157--176.
12.
S. Blunck, Analyticity and discrete maximal regularity on $L^p$ spaces, J. Funct. Anal., 183 (2001), pp. 211--230.
13.
P. Clément, B. de Pagter, F. Sukochev, and H. Witvliet, Schauder decompositions and multiplier theorems, Studia Math., 138 (2000), pp. 135--163.
14.
M. Crouzeix and V. Thomée, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp., 49 (1987), pp. 359--377.
15.
G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., 4 (1956), pp. 33--53.
16.
G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3 (1963), pp. 27--43.
17.
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, UK, 1989.
18.
L. de Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, 34 (1964), pp. 205--223.
19.
M. Geissert, Discrete maximal $L^p$ regularity for finite element operators, SIAM J. Numer. Anal., 44 (2006), pp. 677--698.
20.
M. Geissert, Applications of discrete maximal $L^p$ regularity for finite element operators, Numer. Math., 108 (2007), pp. 121--149.
21.
D. Guidetti, Backward Euler scheme, singular Hölder norms, and maximal regularity for parabolic difference equations, Numer. Funct. Anal. Optim., 28 (2007), pp. 307--337.
22.
D. Guidetti, Maximal regularity for parabolic equations and implicit Euler scheme, Mathematical Analysis Seminar, Department of Mathematics, University of Bologna, Tecnoprint, Bologna, 2007, pp. 253--264.
23.
D. Guidetti and S. Piskarev, Stability of the Crank-Nicolson scheme and maximal regularity for parabolic equations in $C^\theta(\bar\Omega)$ spaces, Numer. Funct. Anal. Optim., 20 (1999), pp. 251--277.
24.
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential--Algebraic Problems, 2nd ed., Springer, Berlin, 1996.
25.
N. J. Kalton and G. Lancien, A solution to the problem of $L^p$-maximal regularity, Math. Z., 235 (2000), pp. 559--568.
26.
P. Kunstmann, B. Li, and Ch. Lubich, Runge--Kutta Time Discretization of Nonlinear Parabolic Equations Studied via Discrete Maximal Parabolic Regularity, preprint, arXiv:1606.03692, 2016.
27.
P. C. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, in Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., 1855, Springer, New York, 2004, pp. 65--311.
28.
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr. 23, AMS, Providence, RI, 1968.
29.
D. Leykekhman and B. Vexler, Discrete Maximal Parabolic Regularity for Galerkin Finite Element Methods, preprint, arXiv:1505.04808, 2015.
30.
B. Li, Maximum-norm stability and maximal $L^p$ regularity of FEMs for parabolic equations with Lipschitz continuous coefficients, Numer. Math., 131 (2015), pp. 489--516.
31.
B. Li, Convergence of a Decoupled Mixed FEM for the Dynamic Ginzburg--Landau Equations in Nonsmooth Domains with Incompatible Initial Data, preprint, arXiv:1605.01208, 2016.
32.
B. Li and W. Sun, Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Int. J. Numer. Anal. Model., 10 (2013), pp. 622--633.
33.
B. Li and W. Sun, Regularity of the diffusion-dispersion tensor and error analysis of FEMs for a porous media flow, SIAM J. Numer. Anal., 53 (2015), pp. 1418--1437.
34.
P. L. Lions, Mathematical Topics in Fluid Mechanics, Volume 1. Incompressible Models, Clarendon Press, Oxford, UK, 1996.
35.
Ch. Lubich and A. Ostermann, Runge--Kutta methods for parabolic equations and convolution quadrature, Math. Comp., 60 (1993), pp. 105--131.
36.
Ch. Lubich and A. Ostermann, Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations Nonsmooth-data error estimates and applications to long-time behaviour, Appl. Numer. Math., 22 (1996), pp. 279--292.
37.
Ch. Lubich, Convolution quadrature revisited, BIT, 44 (2004), pp. 503--514.
38.
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995.
39.
E. M. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc., 123 (1995), pp. 1465--1474.
40.
P. Portal, Maximal regularity of evolution equations on discrete time scales, J. Math. Anal. Appl., 304 (2005), pp. 1--12.
41.
L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag, Berlin, 2007.
42.
L. Weis, A new approach to maximal $L^p$-regularity, in Evolution Equations and Their Applications in Physical and Life Sciences, Lecture Notes in Pure and Appl. Math. 215, Marcel Dekker, New York, 2001, pp. 195--214.
43.
L. Weis, Operator-valued Fourier multiplier theorems and maximal $L^p$-regularity, Math. Ann., 319 (2001), pp. 735--758.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 3600 - 3624
ISSN (online): 1095-7170

History

Submitted: 22 September 2015
Accepted: 14 October 2016
Published online: 15 December 2016

Keywords

  1. maximal regularity
  2. A-stability
  3. multistep methods
  4. Runge--Kutta methods
  5. parabolic equations

MSC codes

  1. 65M12
  2. 65L04

Authors

Affiliations

Funding Information

Alexander von Humboldt-Stiftung http://dx.doi.org/10.13039/100005156
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659 : SFB 1173

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media