The convergence properties of adaptive systems in terms of excitation conditions on the regressor vector are well known. With persistent excitation of the regressor vector in model reference adaptive control the state error and the adaptation error are globally exponentially stable or, equivalently, exponentially stable in the large. When the excitation condition, however, is imposed on the reference input or the reference model state, it is often incorrectly concluded that the persistent excitation in those signals also implies exponential stability in the large. The definition of persistent excitation is revisited so as to address some possible confusion in the adaptive control literature. It is then shown that persistent excitation of the reference model only implies local persistent excitation (weak persistent excitation). Weak persistent excitation of the regressor is still sufficient for uniform asymptotic stability in the large, but not exponential stability in the large. We show that there exists an infinite region in the state-space of adaptive systems where the state rate is bounded. This infinite region with finite rate of convergence is shown to exist not only in classic open-loop reference model adaptive systems but also in a new class of closed-loop reference model adaptive systems.

  • 1.  B. D. . Anderson, Exponential stability of linear equations arising in adaptive identification , IEEE Trans. Automat. Control , 22 ( 1977 ), pp. 83 -- 88 . CrossrefISIGoogle Scholar

  • 2.  B. D. O. Anderson and  C. R. Johnson , Jr., Exponential convergence of adaptive identification and control algorithms , Automatica , 18 ( 1982 ), pp. 1 -- 13 . CrossrefISIGoogle Scholar

  • 3.  B. D. O. Anderson and  J. B. Moore , New results in linear system stability , SIAM J. Control , 7 ( 1969 ), pp. 398 -- 414 . LinkISIGoogle Scholar

  • 4.  E. A. Barbashin and  N. N. Krasovskii , On the stability of motion as a whole , Dokl. Akad. Nauk SSSR , 86 ( 1952 ), pp. 453 -- 456 . Google Scholar

  • 5.  S. Boyd and  S. Sastry , On parameter convergence in adaptive control , Systems Control Lett. , 3 ( 1983 ), pp. 311 -- 319 . CrossrefISIGoogle Scholar

  • 6.  S. Boyd and  S. S. Sastry , Necessary and sufficient conditions for parameter convergence in adaptive control , Automatica , 22 ( 1986 ), pp. 629 -- 639 . CrossrefISIGoogle Scholar

  • 7.  C. Desoer R. Liu and  L. Auth , Linearity vs. nonlinearity and asymptotic stability in the large , IEEE Trans. Circuit Theory , 12 ( 1965 ), pp. 117 -- 118 , https://doi.org/10.1109/TCT.1965.1082383. CrossrefGoogle Scholar

  • 8.  T. Gibson Z. Qu A. Annaswamy and  E. Lavretsky , Adaptive output feedback based on closed-loop reference models , in IEEE Trans. Automat. Control , 60 ( 2015 ), pp. 2728 -- 2733 , https://doi.org/10.1109/TAC.2015.2405295. CrossrefISIGoogle Scholar

  • 9.  T. E. Gibson, Closed-Loop Reference Model Adaptive Control: With Application to Very Flexible Aircraft, Ph.D. thesis, Massachusetts Institute of Technology, 2014. Google Scholar

  • 10.  T. E. Gibson and A. M. Annaswamy, Adaptive control and the definition of exponential stability, in Proceedings of the 2015 American Control Conference, 2015, pp. 1549--1554, https://doi.org/10.1109/ACC.2015.7170953. Google Scholar

  • 11.  T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, Improved transient response in adaptive control using projection algorithms and closed loop reference models, in Proceedings of the AIAA Guidance Navigation and Control Conference, 2012. Google Scholar

  • 12.  T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, Closed-loop reference model adaptive control, Part I: Transient performance, in Proceedings of the American Control Conference, 2013. Google Scholar

  • 13.  T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, Closed-loop reference models for output--feedback adaptive systems, in Proceedings of the European Control Conference, 2013. Google Scholar

  • 14.  T. E. Gibson A. M. Annaswamy and  E. Lavretsky , On adaptive control with closed-loop reference models: Transients, oscillations, and peaking , IEEE Access , 1 ( 2013 ), pp. 703 -- 717 . CrossrefISIGoogle Scholar

  • 15.  I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016, http://www.deeplearningbook.org. Google Scholar

  • 16.  I. Goodfellow J. Pouget-Abadie M. Mirza B. Xu D. Warde-Farley S. Ozair A. Courville and  Y. Bengio , Generative adversarial nets , in Advances in Neural Information Processing Systems , 2014 , pp. 2672 -- 2680 . Google Scholar

  • 17.  W. Hahn, Stability of Motion, Springer-Verlag, New York, 1967. Google Scholar

  • 18.  P. Ioannou and J. Sun, Robust Adaptive Control, Dover, New York, 2013. Google Scholar

  • 19.  B. Jenkins, T. Gibson, A. Annaswamy, and E. Lavretsky, Convergence properties of adaptive systems with open-and closed-loop reference models, in Proceedings of the AIAA Guidance Navigation and Control Conference, 2013. Google Scholar

  • 20.  B. Jenkins T. Gibson A. Annaswamy and  E. Lavretsky , Uniform asymptotic stability and slow convergence in adaptive systems , in Proceedings of the IFAC International Workshop on Adaptation and Learning in Control and Signal Processing , Vol. 11 , 2013 , pp. 446 -- 451 . Google Scholar

  • 21.  R. E. Kalman , Contributions to the theory of optimal control , Bol. Soc. Math. Mex. , 5 ( 1960 ), pp. 102 -- 119 . Google Scholar

  • 22.  R. E. Kalman and  J. E. Bertram , Control systems analysis and design via the `second method' of Liapunov, I. Continuous-time systems , J. Basic Engineering , 82 ( 1960 ), pp. 371 -- 393 . CrossrefGoogle Scholar

  • 23.  N. Krasovskii, Stability of Motion, Stanford University Press, Stanford, CA, 1963. Google Scholar

  • 24.  G. Kreisselmeier , Adaptive observers with exponential rate of convergence , IEEE Trans. Automat. Control , 22 ( 1977 ), pp. 2 -- 8 . CrossrefISIGoogle Scholar

  • 25.  J. LaSalle , Some extensions of Liapunov's second method , IRE Trans. Circuit Theory , 7 ( 1960 ), pp. 520 -- 527 , https://doi.org/10.1109/TCT.1960.1086720. CrossrefGoogle Scholar

  • 26.  J. P. Lasalle , Asymptotic stability criteria, in Hydrodynamic Instability, Proc. Sympos. Appl. Math. 13, AMS, Providence , RI , 1962 , pp. 299 -- 307 . Google Scholar

  • 27.  P. M. Lion , Rapid identification of linear and nonlinear systems , AIAA J. , 5 ( 1967 ), pp. 1835 -- 1842 . CrossrefGoogle Scholar

  • 28.  A. Loría and  E. Panteley , Uniform exponential stability of linear time-varying systems: Revisited , Systems Control Lett. , 47 ( 2002 ), pp. 13 -- 24 . CrossrefISIGoogle Scholar

  • 29.  I. Malkin , On stability in the first approximation , Sb. Nauch. Trudov Kazanskogo Aviac. Inst. , 3 ( 1935 ). Google Scholar

  • 30.  J. S. Massera , Contributions to stability theory , Ann. Math. , 64 ( 1956 ), pp. 182 -- 206 . CrossrefGoogle Scholar

  • 31.  A. Morgan and  K. Narendra , On the stability of nonautonomous differential equations ${\dot x = [{A}+{B}(t)]x}$, with skew symmetric matrix ${B(t)}$ , SIAM J. Control Optim. , 15 ( 1977 ), pp. 163 -- 176 . LinkISIGoogle Scholar

  • 32.  A. Morgan and  K. Narendra , On the uniform asymptotic stability of certain linear nonautonomous differential equations , SIAM J. Control Optim. , 15 ( 1977 ), pp. 5 -- 24 . LinkISIGoogle Scholar

  • 33.  K. S. Narendra and  A. M. Annaswamy , Robust adaptive control in the presence of bounded disturbances , IEEE Trans. Automat. Control , 31 ( 1986 ), pp. 306 -- 315 . CrossrefISIGoogle Scholar

  • 34.  K. S. Narendra and  A. M. Annaswamy , Persistent excitation in adaptive systems , Internat. J. Control , 45 ( 1987 ), pp. 127 -- 160 . CrossrefISIGoogle Scholar

  • 35.  K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Dover, New York, 2005. Google Scholar

  • 36.  O. Nouwens A. M. Annaswamy and  E. Lavretsky , Analysis of slow convergence regions in adaptive systems, in 2016 American Control Conference (ACC), Boston , MA , 2016 , pp. 6995 -- 7000 . Google Scholar

  • 37.  E. Panteley A. Loría and  A. Teel , Relaxed persistency of excitation for uniform asymptotic stability , IEEE Trans. Automat. Control , 46 ( 2001 ), pp. 1874 -- 1886 . CrossrefISIGoogle Scholar

  • 38.  B. Shahriari K. Swersky Z. Wang and  R. P. Adams . de Freitas, Taking the human out of the loop: A review of bayesian optimization , Proc. IEEE , 104 ( 2016 ), pp. 148 -- 175 . CrossrefISIGoogle Scholar

  • 39.  R. S. Sutton A. G. Barto and  R. J. Williams , Reinforcement learning is direct adaptive optimal control , IEEE Control Systems , 12 ( 1992 ), pp. 19 -- 22 . CrossrefGoogle Scholar

  • 40.  J. S.-C. Yuan and  W. M. Wonham , Probing signals for model reference identification , IEEE Trans. Automat. Control , 22 ( 1977 ), pp. 530 -- 538 . CrossrefISIGoogle Scholar