Improved Average-Case Lower Bounds for De Morgan Formula Size: Matching Worst-Case Lower Bound

We give an explicit function $h:\{0,1\}^n \to \{0,1\}$ such that every de Morgan formula of size $n^{3-o(1)}/r^2$ agrees with $h$ on at most a fraction of $\frac{1}{2}+2^{-\Omega(r)}$ of the inputs. Our technical contributions include a theorem that shows that the “expected shrinkage” result of H\aastad [SIAM J. Comput., 27 (1998), pp. 48--64] actually holds with very high probability (where the restrictions are chosen from a certain distribution that takes into account the structure of the formula), using ideas of Impagliazzo, Meka, and Zuckerman [Proceedings of FOCS, 2012, pp. 111--119].

  • 1.  A. E. Andreev , On a method for obtaining more than quadratic effective lower bounds for the complexity of $\pi$-schemes , Moscow Univ. Math. Bull. , 42 ( 1987 ), pp. 63 -- 66 . In Russian. Google Scholar

  • 2.  R. Beals H. Buhrman R. Cleve and  M. Mosca . de Wolf, Quantum lower bounds by polynomials , J. ACM , 48 ( 2001 ), pp. 778 -- 797 . CrossrefISIGoogle Scholar

  • 3.  J. Bourgain , On the construction of affine extractors , Geom. Funct. Anal. , 17 ( 2007 ), pp. 33 -- 57 . CrossrefISIGoogle Scholar

  • 4.  B. Chor O. Goldreich J. J. Friedman S. Rudich and  R. Smolensky , The bit extraction problem of t-resilient functions , in Proceedings of FOCS , 1985 , pp. 396 -- 407 . Google Scholar

  • 5.  H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. (1952), pp. 493--507.Google Scholar

  • 6.  R. Chen V. Kabanets A. Kolokolova R. Shaltiel and  D. Zuckerman , Mining circuit lower bound proofs for meta-algorithms , in Proceedings of CCC , 2014 , pp. 262 -- 273 . Google Scholar

  • 7.  A. Gabizon R. Raz and  R. Shaltiel , Deterministic extractors for bit-fixing sources by obtaining an independent seed , SIAM J. Comput. , 36 ( 2006 ), pp. 1072 -- 1094 . LinkISIGoogle Scholar

  • 8.  J. , The shrinkage exponent of De Morgan formulas is 2 , SIAM J. Comput. , 27 ( 1998 ), pp. 48 -- 64 . LinkISIGoogle Scholar

  • 9.  W. Hoeffding , Probability inequalities for sums of bounded random variables , J. Amer. Statist. Assoc. , 58 ( 1963 ), pp. 13 -- 30 . CrossrefISIGoogle Scholar

  • 10.  R. Impagliazzo R. Meka and  D. Zuckerman , Pseudorandomness from shrinkage , in Proceedings of FOCS , 2012 , pp. 111 -- 119 . Google Scholar

  • 11.  R. Impagliazzo and  N. Nisan , The effect of random restrictions on formula size , Random Struct. Algorithms , 4 ( 1993 ), pp. 121 -- 134 . CrossrefISIGoogle Scholar

  • 12.  S. Jukna, Boolean Function Complexity: Advances and Frontiers, Adv. Frontiers 27, Springer-Verlag, Berlin, 2012.Google Scholar

  • 13.  V. M. Khrapchenko , A method of determining lower bounds for the complexity of $\pi$ schemes , Mat. Zametki , 10 ( 1971 ), pp. 83 -- 92 . Google Scholar

  • 14.  I. Komargodski and  R. Raz , Average-case lower bounds for formula size , in Proceedings of STOC , 2013 , pp. 171 -- 180 . Google Scholar

  • 15.  I. Komargodski R. Raz and  A. Tal , Improved average-case lower bounds for De Morgan formula size , in Proceedings of FOCS , 2013 , pp. 588 -- 597 . Google Scholar

  • 16.  J. Kamp and  D. Zuckerman , Deterministic extractors for bit-fixing sources and exposure-resilient cryptography , SIAM J. Comput. , 36 ( 2007 ), pp. 1231 -- 1247 . LinkISIGoogle Scholar

  • 17.  R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, UK, 1995.Google Scholar

  • 18.  M. Paterson and  U. Zwick , Shrinkage of De Morgan formulae under restriction , Random Struct. Algorithms , 4 ( 1993 ), pp. 135 -- 150 . CrossrefISIGoogle Scholar

  • 19.  A. Rao , An exposition of bourgain's 2-source extractor , Electronic Colloquium on Computational Complexity , 14 , 2007 . Google Scholar

  • 20.  A. Rao , Extractors for low-weight affine sources , in Proceedings of the IEEE Conference on Computational Complexity , 2009 , pp. 95 -- 101 . Google Scholar

  • 21.  B. Reichardt , Reflections for quantum query algorithms , in Proceedings of SODA , 2011 , pp. 560 -- 569 . Google Scholar

  • 22.  A. Rudra, Lecture Notes on Coding Theory, http://www.cse.buffalo.edu/~atri/courses/coding-theory/lectures/lect19.pdf (2007).Google Scholar

  • 23.  R. Santhanam and  Fighting : New and improved algorithms for formula and QBF satisfiability , in Proceedings of FOCS , 2010 , pp. 183 -- 192 . Google Scholar

  • 24.  B. A. Subbotovskaya , Realizations of linear function by formulas using $+,\cdot,-$ , Dokl. Akad. Nauk SSSR , 136 ( 1961 ), pp. 553 -- 555 . Google Scholar

  • 25.  A. Tal , Shrinkage of de Morgan formulae from quantum query complexity , in Proceedings of FOCS , 2014 , pp. 551 -- 560 . Google Scholar