Abstract

This paper proposes a novel control scheme, named self-reflective model predictive control (MPC), which takes its own limitations in the presence of process noise and measurement errors into account. In contrast to existing output-feedback MPC and persistently exciting MPC controllers, the proposed self-reflective MPC controller not only propagates a matrix-valued state forward in time in order to predict the variance of future state estimates, but it also propagates a matrix-valued adjoint state backward in time. This adjoint state is used by the controller to compute and minimize a second order approximation of its own expected loss of control performance in the presence of random process noise and inexact state estimates. The properties of the proposed controller are illustrated with a small but nontrivial case study.

Keywords

  1. optimal control
  2. model predictive control
  3. optimal experiment design
  4. dual control

MSC codes

  1. 49K21
  2. 49K30
  3. 93B07
  4. 93B52

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Allgöwer and A. Zheng, Nonlinear Predictive Control, Progr. Syst. Control Theory 26, Birkhäuser, Boston, 2000.
2.
R. Amrit, J.B. Rawlings, and D. Angeli, Economic optimization using model predictive control with a terminal cost?, Annu. Rev. Control, 35 (2011), pp. 178--186.
3.
D. Angeli, R. Amrit, and J.B. Rawlings, On average performance and stability of economic model predictive control, IEEE Trans. Automat. Control, 57 (2012), pp. 1615--1626.
4.
R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
5.
A. Bemporad and A. Garulli, Output-feedback predictive control of constrained linear systems via set-membership state estimation, Internat. J. Control, 73 (2000), pp. 655--665.
6.
A. Bemporad, F. Borrelli, and M. Morari, Model predictive control based on linear programming - The explicit solution, IEEE Trans. Automat. Control, 47 (2002), pp. 1974--1985.
7.
L.T. Biegler and J.B. Rawlings, Optimization approaches to nonlinear model predictive control, in Proceedings of the 4th International Conference on Chemical Process Control-CPC IV, Cache, Austin, TX, 1991, pp. 543--571.
8.
R.R. Bitmead, M. Gevers, V. Wertz, Adaptive Optimal Control: The Thinking Man's GPC, Prentice-Hall, Englewood Cliffs, NJ, 1990.
9.
S. Bittanti, P. Colaneri, and G. De Nicolao, The periodic Riccati equation, in The Riccati Equation, Willems, Bittanti, and Laub, eds., Springer, Berlin, 1991, pp. 127--162.
10.
D. Bertsekas, Dynamic Programming and Optimal Control, Vol. II: Approximate Dynamic Programming, Dyn. Prog. Optim. Control, Athena Scientific, Belmont, MA, 2012.
11.
L. Chisci and G. Zappa, Feasibility in predictive control of constrained linear systems: The output feedback case, Internat. J. Robust Nonlinear Control, 12 (2002), pp. 465--487.
12.
M. Diehl, H.J. Ferreau, and N. Haverbeke, Efficient numerical methods for nonlinear MPC and moving horizon estimation, in Nonlinear Model Predictive Control, Springer, Berlin, 2009, pp. 391--417.
13.
M. Diehl, R. Amrit, and J. Rawlings, A Lyapunov function for economic optimizing model predictive control, IEEE Trans. Automat. Control, 56 (2011), pp. 703--707.
14.
H. Chen and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica J. IFAC, 34 (1998), pp. 1205--1217.
15.
A.A. Feldbaum, Dual-control theory: Part I, Autom. Remote Control, 21 (1960), pp. 1240--1249.
16.
A.A. Feldbaum, Dual-control theory: Part II, Autom. Remote Control, 21 (1960), pp. 1453--1464.
17.
A.A. Feldbaum, Dual-control theory: Part III, Autom. Remote Control, 22 (1961), pp. 3--16.
18.
A.A. Feldbaum, Dual-control theory: Part IV, Autom. Remote Control, 22 (1961), pp. 129--143.
19.
N.M. Filatov and H. Unbehauen, Survey of adaptive dual control methods, in IEE Proc. Part D Control Theory Appl., 147 (2000), pp. 118--128.
20.
N.M. Filatov and H. Unbehauen, Adaptive Dual Control, Springer, Berlin, 2004.
21.
R. Findeisen, L. Imsland, F. Allgöwer, and B.A. Foss, State and output feedback nonlinear model predictive control: An overview, Eur. J. Control, 9 (2003), pp. 190--207.
22.
R. Fisher, The Design of Experiments, Oliver & Boyd, Edinburgh, 1935.
23.
M. Forgione, X. Bombois, and P.M.J. Van den Hof, Data-driven model improvement for model-based control, Automatica J. IFAC, 52 (2015), pp. 118--124.
24.
P.J. Goulart and E.C. Kerrigan, Output feedback receding horizon control of constrained systems, Internat. J. Control, 80 (2007), pp. 8--20.
25.
L. Grüne, Economic receding horizon control without terminal constraints, Automatica J. IFAC, 43 (2011), pp. 725--734.
26.
N. Haverbeke, Efficient Numerical Methods for Moving Horizon Estimation, Ph.D. thesis, KU Leuven, Leuven, Belgium, 2011.
27.
T.A.N. Heirung, B.E. Ydstie, and B. Foss, Towards dual MPC, in Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout, Netherlands, Curran, Red Hook, NY, 2012, pp. 502--507.
28.
T.A.N. Heirung, B. Foss, and B.E. Ydstie, MPC-based dual control with online experiment design, J. Process Control, 32 (2015), pp. 64--76.
29.
T.A.N. Heirung, B.E. Ydstie, and B. Foss, Dual adaptive model predictive control, Automatica J. IFAC, 80 (2017), pp. 340--348.
30.
B. Hernandez and P. Trodden, Persistently Exciting Tube MPC, American Control Conference, IEEE, Piscataway, NJ, pp. 948--953.
31.
B. Houska, H.J. Ferreau, and M. Diehl, An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range, Automatica J. IFAC, 47 (2011), pp. 2279--2285.
32.
B. Houska, D. Telen, F. Logist, M. Diehl, and J. Van Impe, An economic objective for optimal experiment design of nonlinear dynamic processes, Automatica J. IFAC, 51 (2015), pp. 98--103.
33.
B. Houska, Enforcing asymptotic orbital stability of economic model predictive control, Automatica J. IFAC, 57 (2015), pp. 45--50.
34.
M. Hovd and R.R. Bitmead, Interaction between control and state estimation in nonlinear MPC, Model. Identif. Control, 26 (2005), pp. 165--174.
35.
T.K. Kim and T. Sugie, Adaptive receding horizon predictive control for constrained discrete­time systems with parameter uncertaintes, Internat. J. Control, 81 (2008), pp. 62--73.
36.
A.B. Kurzhanski, The problem of measurement feedback control, Appl. Math. Mech., 64 (2004), pp. 547--563.
37.
C.A. Larsson, M. Annergren, H. Hjalmarsson, C.R. Rojas, X. Bombois, A. Mesbah, and P. Moden, Model predictive control with integrated experiment design for output error systems, in Proceedings of the 2013 European Control Conference (ECC), IEEE, Piscataway, NJ, 2013, pp. 3790--3795.
38.
C. Larsson, C. Rojas, X. Bombois, and H. Hjalmarsson, Experimental evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer, J. Process. Control, 31 (2015), pp. 1--16.
39.
Y.I. Lee and B. Kouvaritakis, Receding-horizon output feedback control for systems with input saturation, IEE Proc. Part D Control Theory Appl., 148 (2001), pp. 109--115.
40.
J.M. Lee and J.H. Lee, An approximate dynamic programming based approach to dual adaptive control, J. Process. Control, 19 (2009), pp. 859--864.
41.
S. Lucia and R. Paulen, Robust nonlinear model predictive control with reduction of uncertainty via robust optimal experiment design, in Proceedings of the IFAC World Congress, Cape Town, South Africa, Curran, Red Hook, NY, 2014, pp. 1904--1909.
42.
G. Marafioti, R.R. Bitmead, and M. Hovd, Persistently exciting model predictive control, Internat. J. Adapt. Control Signal Process., 28 (2014), pp. 536--552.
43.
D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica J. IFAC, 36 (2000), pp. 789--814.
44.
D.Q. Mayne, S.V. Rakovic, R. Findeisen, and F. Allgöwer, Robust output feedback model predictive control of constrained linear systems, Automatica J. IFAC, 42 (2006), pp. 1217--1222.
45.
D.Q. Mayne, S.V. Rakovic, R. Findeisen, and F. Allgöwer, Robust output feedback model predictive control of constrained linear systems: Time varying case, Automatica J. IFAC, 45 (2009), pp. 2082--2087.
46.
A. Mesbah, X. Bombois, M. Forgione, H. Hjalmarsson, and P.M.J. Van den Hof, Least costly losed-loop performance diagnosis and plant re-identification, Internat. J. Control, 88 (2015), pp. 2264--2276.
47.
J. Nocedal and S.J. Wright, Numerical Optimization, Springer Ser. Oper. Res. Financ. Eng., 2nd ed., Springer, Berlin, 2006.
48.
G.W. Oehlert, A note on the delta method, Amer. Statist., 46 (1992), pp. 27--29.
49.
F. Pukelsheim, Optimal Design of Experiments, Wiley, New York, 1993.
50.
S.V. Rakovic, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen, Parameterized tube model predictive control, IEEE Trans. Automat. Control, 57 (2012), pp. 2746--2761.
51.
C.V. Rao, J.B. Rawlings, and J.H. Lee, Constrained linear state estimation - a moving horizon approach, Automatica J. IFAC, 37 (2001), pp. 1619--1628.
52.
J.B. Rawlings and D.Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill, Madison, WI, 2009.
53.
S. Sager, Sampling decisions in optimum experimental design in the light of Pontryagin's maximum principle, SIAM J. Control Optim., 51 (2013), pp. 3181--3207.
54.
M.S. Shouche, H. Genceli, and M. Nikolaou, Effect of online optimization techniques on model predictive control and identidification (MPCI), Comput. Chem. Eng., 26 (2002), pp. 1241--1252.
55.
R.F. Stengel, Extended Kalman filter, in Optimal Control and Estimation, Dover, 1994, pp. 299--419.
56.
D. Telen, B. Houska, F. Logist, E. Van Derlinden, M. Diehl, and J. Van Impe, Optimal experiment design under process noise using Riccati differential equations, J. Process. Control, 23 (2013), pp. 613--629.
57.
D. Telen, F. Logist, R. Quirynen, B. Houska, M. Diehl, and J. Van Impe, Optimal experiment design for nonlinear dynamic (bio)chemical systems using sequential semidefinite programming, AIChE J., 60 (2014), pp. 1728--1739.
58.
B. Wittenmark and C. Elevitch, An adaptive control algorithm with dual features, in IFAC Symposium on Identification and System Parameter Estimation, Pergamon, Oxford, 1985, pp. 587--592.
59.
B. Wittenmark, Adaptive dual control methods: An overview, in 5th IFAC Symposium on Adaptive Systems in Control and Signal Processing Budapest, Hungary, Pergamon, NY, 1995, pp. 67--72.
60.
J. Yan and R.R. Bitmead, Incorporating state estimation into model predictive control and its application to network traffic control, Automatica J. IFAC, 41 (2005), pp. 595--604.
61.
E. Zacekova, S. Privara, and M. Pcolka, Persistent excitation condition within the dual control framework, J. Process. Control, 23 (2013), pp. 1270--1280.
62.
M. Zanon, S. Gros, and M. Diehl, A Lyapunov function for periodic economic optimizing model predictive control, in Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, Piscataway, NJ, 2013, pp. 5107--5112.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2959 - 2980
ISSN (online): 1095-7138

History

Submitted: 25 November 2015
Accepted: 5 July 2017
Published online: 19 September 2017

Keywords

  1. optimal control
  2. model predictive control
  3. optimal experiment design
  4. dual control

MSC codes

  1. 49K21
  2. 49K30
  3. 93B07
  4. 93B52

Authors

Affiliations

Funding Information

ShanghaiTech University : F-0203-14-012

Funding Information

OPTEC : FV/10/002

Funding Information

Federaal Wetenschapsbeleid https://doi.org/10.13039/501100002749 : IAP VII/19

Funding Information

Fonds Wetenschappelijk Onderzoek https://doi.org/10.13039/501100003130 : KAN2013 1.5.189.13, FWO-G.0930.13

Funding Information

National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 61473185

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media