Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices

Abstract

This paper analyzes the kernel density estimation on spaces of Gaussian distributions endowed with different metrics. Expressions of kernels are provided for the 2-Wasserstein metric on the space of multivariate Gaussians. For the Fisher metric the kernels are provided only for univariate Gaussians and multivariate centered Gaussians. The density estimation is successfully applied to a classification problem of electro-encephalographic signals.

Keywords

  1. kernel density estimation
  2. Riemannian geometry
  3. Fisher distance
  4. Wasserstein distance

MSC codes

  1. 51H25
  2. 62G07

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Agueh and G. Carlier, Barycenters in the Wasserstein Space, SIAM J. Math. Anal., 43 (2011), pp. 904--924.
2.
S.-i. Amari, H. Nagaoka, and D. Harada, Methods of Information Geometry, Trans. Math. Monogr., AMS, Providence, RI, 2007.
3.
M. Arnaudon, F. Barbaresco, and L. Yang, Riemannian medians and means with applications to radar signal processing, IEEE J. Sel. Top. Signal Process., 7 (2013), pp. 595--604.
4.
D. M. Asta, Kernel Density Estimation on Symmetric Spaces, preprint, arXiv:1411.4040, 2014.
5.
D. A. Bini and B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices, Linear Algebra Appl., 438 (2013), pp. 1700--1710.
6.
J. W. Cannon, W. J. Floyd, R. Kenyon, and W. R. Parry, Hyperbolic Geometry, MSRI Book Series 31, MSRI, Berkeley, 1997.
7.
E. Chevallier, F. Barbaresco, and J. Angulo, Probability density estimation on the hyperbolic space applied to radar processing, International Conference on Networked Geometric Science of Information, Springer, Switzerland, 2015.
8.
R. P. W. Duin, On the choice of smoothing parameters for Parzen estimators of probability density functions, IEEE Trans. Comput., 25 (1976), pp. 1175--1179.
9.
A. Grigoryan, Heat Kernel and Analysis on Manifolds, AMS, Providence, RI, 2009.
10.
H. Hendriks, Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions, Ann. Statist., 18 (1990), pp. 832--849.
11.
G. Henry, A. Mun͂oz, and D. Rodriguez, Locally adaptive density estimation on Riemannian manifolds, Statist. Oper. Res. Trans., 37 (2013), pp. 111--130.
12.
S. F. Huckemann, P. T. Kim, J.-Y. Koo, and A. Munk, Möbius deconvolution on the hyperbolic plane with application to impedance density estimation, Ann. Statist., 38 (2010), pp. 2465--2498.
13.
E. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, Y. Hamam, and E. Monacelli, From Euclidean to Riemannian means: Information geometry for SSVEP classification, in Geometric Science of Information, F. Nielsen and F. Barbaresco, eds., Lecture Notes in Comput. Sci. 9389, Springer, New York, 2015, pp. 595--604.
14.
M. Lovrić, M. Min-Oo, and E. A. Ruh, Multivariate normal distributions parametrized as a Riemannian symmetric space, J. Multivariate Anal., 74 (2000), pp. 36--48.
15.
G. Monge, Mémoire sur la théorie des déblais et des remblais, De l'Imprimerie Royale, 1781.
16.
J. R. Munkres, Elementary Differential Topology, Princeton University Press, Princeton, NJ, 1966.
17.
B. Pelletier, Kernel density estimation on Riemannian manifolds, Statist. Probab. Lett., 73 (2005), pp. 297--304.
18.
X. Pennec, Probabilities and Statistics on Riemannian Manifolds: A Geometric Approach, Report, 2004.
19.
X. Pennec, P. Fillard, and N. Ayache, A Riemannian Framework for Tensor Computing, Int. J. Comput. Vis., 66 (2006), pp. 41--66.
20.
P. T. Kim and D. St. P. Richards. Deconvolution density estimation on the space of positive definite symmetric matrices, in Nonparametric Statistics and Mixture Models, World Scientific, River Edge, NJ, 2011, pp. 147--168.
21.
S. Said, L. Bombrun, Y. Berthoumieu, and J. Manton, Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices, IEEE Trans. Inform. Theory, 99 (2017).
22.
J. Schäfer and K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol., 4 (2005).
23.
L. T. Skovgaard, A Riemannian geometry of the multivariate normal model, Scand. J. Stat., 11 (1984), pp. 211--223.
24.
A. Takatsu, Wasserstein geometry of Gaussian measures, Osaka J. Math., 48 (2011), pp. 1005--1026.
25.
A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, II, Springer, New York, 1988.
26.
C. Villani, Optimal Transport, Grundlehren Math. Wiss., Springer, New York, 2009.
27.
R. A. Wijsman, Invariant Measures on Groups and their Use in Statistics, Lecture Notes Monogr. Ser. 14, Institute of Mathematical Statistics, Hayward, CA, 1990.
28.
L. Yang, Riemannian Median and its Estimation, LMS J. Comput. Math., 13 (2010), pp. 461--479.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 191 - 215
ISSN (online): 1936-4954

History

Submitted: 21 December 2015
Accepted: 7 November 2016
Published online: 8 February 2017

Keywords

  1. kernel density estimation
  2. Riemannian geometry
  3. Fisher distance
  4. Wasserstein distance

MSC codes

  1. 51H25
  2. 62G07

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media