Methods and Algorithms for Scientific Computing

An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method

Abstract

Optimized Schwarz methods (OSMs) are very popular methods which were introduced by P. L. Lions in [On the Schwarz alternating method III: A variant for nonoverlapping subdomains, in 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., SIAM, Philadelphia, 1990, pp. 202--223] for elliptic problems and by B. Després in [C. R. Acad. Sci. Paris Ser. I Math., 311 (1990), pp. 313--316] for propagative wave phenomena. We give here a theory for Lions's algorithm that is the genuine counterpart of the theory developed over the years for the Schwarz algorithm. The first step is to introduce a symmetric variant of the optimized restricted additive Schwarz (ORAS) algorithm [A. St-Cyr, M. J. Gander, and S. J. Thomas, SIAM J. Sci. Comput., 29 (2007), pp. 2402--2425] that is suitable for the analysis of a two-level method. Then we build a coarse space for which the convergence rate of the two-level method is guaranteed regardless of the regularity of the coefficients. We show scalability results for thousands of cores for nearly incompressible elasticity and the Stokes systems with a continuous discretization of the pressure.

Keywords

  1. domain decomposition method
  2. high performance computing
  3. saddle point problem

MSC codes

  1. 65N55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15--41, https://doi.org/10.1137/S0895479899358194.
2.
J.-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136 (1997), pp. 68--82, https://doi.org/10.1006/jcph.1997.5742.
3.
M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1--137, https://doi.org/10.1017/S0962492904000212.
4.
M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numer. Math., 103 (2006), pp. 173--196, https://doi.org/10.1007/s00211-006-0679-9.
5.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008.
6.
X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792--797, https://doi.org/10.1137/S106482759732678X.
7.
L. Conen, V. Dolean, R. Krause, and F. Nataf, A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator, J. Comput. Appl. Math., 271 (2014), pp. 83--99.
8.
B. Després, Décomposition de domaine et problème de Helmholtz, C. R. Acad. Sci. Paris Ser. I Math., 311 (1990), pp. 313--316.
9.
B. Després, Domain decomposition method and the Helmholtz problem II, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), SIAM, Philadelphia, 1993, pp. 197--206.
10.
B. Després, P. Joly, and J. E. Roberts, A domain decomposition method for the harmonic Maxwell equations, in Iterative Methods in Linear Algebra (Brussels, 1991), North--Holland, Amsterdam, 1992, pp. 475--484.
11.
V. Dolean, M. J. Gander, and L. Gerardo-Giorda, Optimized Schwarz methods for Maxwell's equations, SIAM J. Sci. Comput., 31 (2009), pp. 2193--2213, https://doi.org/10.1137/080728536.
12.
V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, SIAM, Philadelphia, 2015.
13.
O. Dubois, M. J. Gander, S. Loisel, A. St-Cyr, and D. B. Szyld, The optimized Schwarz method with a coarse grid correction, SIAM J. Sci. Comput., 34 (2012), pp. A421--A458, https://doi.org/10.1137/090774434.
14.
Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 1175--1199, https://doi.org/10.1051/m2an/2011073.
15.
E. Efstathiou and M. J. Gander, RAS: Understanding Restricted Additive Schwarz, Tech. report 06, McGill University, Montreal, Canada, 2002.
16.
E. Efstathiou and M. J. Gander, Why restricted additive Schwarz converges faster than additive Schwarz, BIT, 43 (2003), pp. 945--959, https://doi.org/10.1023/B:BITN.0000014563.33622.1d.
17.
C. Farhat, A. Macedo, and M. Lesoinne, A two-level domain decomposition method for the iterative solution of high-frequency exterior Helmholtz problems, Numer. Math., 85 (2000), pp. 283--303.
18.
A. Frommer and D. B. Szyld, An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms, SIAM J. Numer. Anal., 39 (2001), pp. 463--479, https://doi.org/10.1137/S0036142900370824.
19.
J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: Reduced dimension coarse spaces, Multiscale Model. Simul., 8 (2010), pp. 1621--1644, https://doi.org/10.1137/100790112.
20.
M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699--731, https://doi.org/10.1137/S0036142903425409.
21.
M. J. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38--60, https://doi.org/10.1137/S1064827501387012.
22.
R. Haferssas, Espaces Grossiers pour les Méthodes de Décomposition de Domaine avec Conditions d'Interface Optimisées, Ph.D. thesis, UPMC, Paris, France, 2016.
23.
P. Havé, R. Masson, F. Nataf, M. Szydlarski, H. Xiang, and T. Zhao, Algebraic domain decomposition methods for highly heterogeneous problems, SIAM J. Sci. Comput., 35 (2013), pp. C284--C302, https://doi.org/10.1137/110842648.
24.
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251--265.
25.
C. Japhet, F. Nataf, and F.-X. Roux, The optimized order $2$ method with a coarse grid preconditioner. Application to convection-diffusion problems, in Proceedings of the 9th International Conference on Domain Decompositon Methods in Science and Engineering, P. Bjorstad, M. Espedal, and D. Keyes, eds., John Wiley & Sons, New York, 1998, pp. 382--389.
26.
P. Jolivet, F. Hecht, F. Nataf, and C. Prud'homme, Scalable domain decomposition preconditioners for heterogeneous elliptic problems, in Proceedings of the 2013 ACM/IEEE Conference on Supercomputing, SC13, ACM, New York, 2013, 80; Best Paper finalist.
27.
P. Jolivet and F. Nataf, HPDDM: High-Performance Unified Framework for Domain Decomposition Methods, MPI-C++ Library, https://github.com/hpddm/hpddm, 2014.
28.
J.-H. Kimn, A convergence theory for an overlapping Schwarz algorithm using discontinuous iterates, Numer. Math., 100 (2005), pp. 117--139, https://doi.org/10.1007/s00211-004-0572-3.
29.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools 6, SIAM, Philadelphia, 1998.
30.
J. Liesen and B. N. Parlett, On nonsymmetric saddle point matrices that allow conjugate gradient iterations, Numer. Math., 108 (2008), pp. 605--624, https://doi.org/10.1007/s00211-007-0131-9.
31.
P.-L. Lions, On the Schwarz alternating method II: Stochastic interpretation and order properties, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., SIAM, Philadelphia, 1989, pp. 47--70.
32.
P.-L. Lions, On the Schwarz alternating method III: A variant for nonoverlapping subdomains, in 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., SIAM, Philadelphia, 1990, pp. 202--223.
33.
S. Loisel, H. Nguyen, and S. R., Optimized Schwarz and 2-Lagrange Methods for Multiscale PDEs, Tech. report, Mathematical Sciences Department, University of Bath, Bath, UK, 2014.
34.
S. Loisel and D. B. Szyld, On the geometric convergence of optimized Schwarz methods with applications to elliptic problems, Numer. Math., 114 (2010), pp. 697--728, https://doi.org/10.1007/s00211-009-0261-3.
35.
J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233--241.
36.
F. Nataf, F. Rogier, and E. de Sturler, Optimal Interface Conditions for Domain Decomposition Methods, Tech. report 301, CMAP (Ecole Polytechnique), Palaiseau, France, 1994.
37.
F. Nataf, H. Xiang, V. Dolean, and N. Spillane, A coarse space construction based on local Dirichlet-to-Neumann maps, SIAM J. Sci Comput., 33 (2011), pp. 1623--1642, https://doi.org/10.1137/100796376.
38.
S. V. Nepomnyaschikh, Mesh theorems of traces, normalizations of function traces and their inversions, Soviet J. Numer. Anal. Math. Modelling, 6 (1991), pp. 223--242.
39.
R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 24 (1987), pp. 355--365, https://doi.org/10.1137/0724027.
40.
H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15 (1870), pp. 272--286.
41.
N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., 126 (2014), pp. 741--770, https://doi.org/10.1007/s00211-013-0576-y.
42.
N. Spillane, V. Dolean, P. Hauret, F. Nataf, and D. Rixen, Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method, C. R. Math. Acad. Sci. Paris, 351 (2013), pp. 197--201, https://doi.org/10.1016/j.crma.2013.03.010.
43.
A. St-Cyr, M. J. Gander, and S. J. Thomas, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, SIAM J. Sci. Comput., 29 (2007), pp. 2402--2425, https://doi.org/10.1137/060652610.
44.
A. Toselli and O. Widlund, Domain Decomposition Methods---Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005.
45.
X. Tu and J. Li, A FETI-DP type domain decomposition algorithm for three-dimensional incompressible Stokes equations, SIAM J. Numer. Anal., 53 (2015), pp. 720--742, https://doi.org/10.1137/13094997X.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1345 - A1365
ISSN (online): 1095-7197

History

Submitted: 4 February 2016
Accepted: 9 March 2017
Published online: 27 July 2017

Keywords

  1. domain decomposition method
  2. high performance computing
  3. saddle point problem

MSC codes

  1. 65N55

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media