Abstract

This work is concerned with the development of a space-time adaptive numerical method, based on a rigorous a posteriori error bound, for a semilinear convection-diffusion problem which may exhibit blow-up in finite time. More specifically, a posteriori error bounds are derived in the $L^{\infty}(L^2)+L^2(H^1)$-type norm for a first order in time implicit-explicit interior penalty discontinuous Galerkin in space discretization of the problem, although the theory presented is directly applicable to the case of conforming finite element approximations in space. The choice of the discretization in time is made based on a careful analysis of adaptive time-stepping methods for ODEs that exhibit finite time blow-up. The new adaptive algorithm is shown to accurately estimate the blow-up time of a number of problems, including one which exhibits regional blow-up.

Keywords

  1. finite time blow-up
  2. conditional a posteriori error estimates
  3. IMEX method
  4. discontinuous Galerkin methods

MSC codes

  1. 65M15
  2. 65M50
  3. 65M60
  4. 35B44

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Acosta, R. G. Duran, and J. D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up, Computing, 68 (2002), pp. 343--373.
2.
M. Agueh, Gagliardo--Nirenberg inequality involving the gradient $L^2$-norm, C. R. Acad. Sci. Paris Ser. I, 346 (2008), pp. 757--762.
3.
G. D. Akrivis, V. Dougalis, O. A. Karakashian, and W. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput., 25 (2003), pp. 186--212.
4.
L. A. Assalé, T. K. Boni, and D. Nabongo, Numerical blow-up time for a semilinear parabolic equation with nonlinear boundary conditions, J. Appl. Math., 2008 (2009), pp. 1--29.
5.
W. Bangerth, R. Hartmann, and G. Kanschat, deal.II---a general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), 24, https://doi.org/10.1145/1268776.1268779.
6.
S. Bartels, A posteriori error analysis for time-dependent Ginzburg-Landau type equations, Numer. Math., 99 (2005), pp. 557--583.
7.
S. Bartels and R. Müller, Quasi-optimal and robust a posteriori error estimates in ${L}^{\infty}({L}^2)$ for the approximation of Allen-Cahn equations past singularities, Math. Comp., 80 (2011), pp. 761--780.
8.
A. Bergam, C. Bernardi, and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp., 74 (2005), pp. 1117--1138.
9.
M. Berger and R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41 (1988), pp. 841--863.
10.
C. J. Budd, W. Huang, and R. D. Russell, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput., 17 (1996), pp. 305--327.
11.
A. Cangiani, E. H. Georgoulis, and S. Metcalfe, Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA J. Numer. Anal., 34 (2014), pp. 1578--1597, https://doi.org/10.1093/imanum/drt052.
12.
J. H. Chaudhry, D. Estep, V. Ginting, J. N. Shadid, and S. Tavener, A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 730--751.
13.
C. H. Cho, S. Hamada, and H. Okamoto, On the finite difference approximation for a parabolic blow-up problem, Jpn. J. Ind. Appl. Math., 24 (2007), pp. 131--160.
14.
J. Coleman and C. Sulem, Numerical simulation of blow-up solutions of the vector nonlinear Schrödinger equation, Phys. Rev. E, 66 (2002), 036701.
15.
E. Cuesta and C. Makridakis, A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces, Numer. Math., 110 (2008), pp. 257--275.
16.
J. De Frutos, B. García-Archilla, and J. Novo, A posteriori error estimates for fully discrete nonlinear parabolic problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 3462--3474.
17.
A. de Pablo, M. Pérez-Llanos, and R. Ferreira, Numerical blow-up for the p-Laplacian equation with a nonlinear source, in Proceedings of the 11th International Conference on Differential Equations, 2005, pp. 363--367.
18.
A. Demlow and E. H. Georgoulis, Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 50 (2012), pp. 2159--2181, http://epubs.siam.org/doi/abs/10.1137/110846397.
19.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Berlin, 2012, https://doi.org/10.1007/978-3-642-22980-0.
20.
S. Dimova, M. Kaschiev, M. Koleva, and D. Vasileva, Numerical analysis of radially nonsymmetric blow-up solutions of a nonlinear parabolic problem, J. Comput. Appl. Math., 97 (1998), pp. 81--97.
21.
S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Hauppauge, NY, 2003.
22.
A. Ern, A. F. Stephansen, and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection--diffusion--reaction problems, J. Comput. Appl. Math., 234 (2010), pp. 114--130.
23.
R. Ferreira, P. Groisman, and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition, Math. Models Methods Appl. Sci., 12 (2002), pp. 461--483.
24.
G. Fibich and B. Ilan, Discretization effects in the nonlinear Schrödinger equation, Appl. Numer. Math., 44 (2003), pp. 63--75.
25.
C. Fierro and A. Veeser, On the a posteriori error analysis of equations of prescribed mean curvature, Math. Comp., 72 (2003), pp. 1611--1634.
26.
E. H. Georgoulis, O. Lakkis, and J. M. Virtanen, A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal., 49 (2011), pp. 427--458, https://doi.org/10.1137/080722461.
27.
E. H. Georgoulis and C. Makridakis, On a posteriori error control for the Allen-Cahn problem, Math. Methods. Appl. Sci., 37 (2014), pp. 173--179, https://doi.org/10.1002/mma.2894.
28.
P. Groisman, Totally discrete explicit and semi-implicit euler methods for a blow-up problem in several space dimensions, Computing, 76 (2006), pp. 325--352.
29.
C. Hirota and K. Ozawa, Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations---an application to the blow-up problems of partial differential equations, J. Comput. Appl. Math., 193 (2006), pp. 614--637, http://www.sciencedirect.com/science/article/pii/S0377042705004358.
30.
B. Hu, Blow-Up Theories for Semilinear Parabolic Equations, Lecture Notes in Math. 2018, Springer, Heidelberg, 2011.
31.
W. Huang, J. Ma, and R. D. Russell, A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations, J. Comput. Phys., 227 (2008), pp. 6532--6552.
32.
B. Janssen and T. P. Wihler, Continuous and Discontinuous Galerkin Time Stepping Methods for Nonlinear Initial Value Problems, preprint, https://arxiv.org/abs/1407.5520, 2015.
33.
O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 2374--2399, https://doi.org/10.1137/S0036142902405217.
34.
D. Kessler, R. H. Nochetto, and A. Schmidt, A posteriori error control for the Allen-Cahn problem: Circumventing Gronwall'��s inequality, ESAIM Math. Model. Numer. Anal., 38 (2004), pp. 129--142, http://eudml.org/doc/245771.
35.
C. Klein, B. Muite, and K. Roidot, Numerical study of blow-up in the Davey-Stewartson system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 1361--1387.
36.
I. Kyza and C. Makridakis, Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations, SIAM J. Numer. Anal., 49 (2011), pp. 405--426.
37.
O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp., 75 (2006), pp. 1627--1658, https://doi.org/10.1090/S0025-5718-06-01858-8.
38.
O. Lakkis and R. H. Nochetto, A posteriori error analysis for the mean curvature flow of graphs, SIAM J. Numer. Anal., 42 (2005), pp. 1875--1898.
39.
C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585--1594, https://doi.org/10.1137/S0036142902406314.
40.
C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math., 104 (2006), pp. 489--514.
41.
F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), pp. 139--196.
42.
F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., 316 (2000), pp. 103--137.
43.
S. Metcalfe, Adaptive Discontinuous Galerkin Methods for Nonlinear Parabolic Problems, Ph.D. thesis, University of Leicester, 2015.
44.
T. Nakagawa, Blowing up of a finite difference solution to $u_t= u_{xx}+ u^2$, Appl. Math. Optim., 2 (1975), pp. 337--350.
45.
F. K. N'Gohisse and T. K. Boni, Numerical blow-up for a nonlinear heat equation, Acta Math. Sin. (Engl. Ser.), 27 (2011), pp. 845--862.
46.
V. Nguyen and H. Zaag, Blow-Up Results for a Strongly Perturbed Semilinear Heat Equation: Theoretical Analysis and Numerical Method, preprint, https://arxiv.org/abs/1410.4079, 2014.
47.
M. Plexousakis, An Adaptive Nonconforming Finite Element Method for the Nonlinear Schrödinger Equation, Ph.D. thesis, University of Tennessee, 1996.
48.
D. Schötzau and L. Zhu, A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Appl. Numer. Math., 59 (2009), pp. 2236--2255, https://doi.org/10.1016/j.apnum.2008.12.014.
49.
A. Stuart and M. Floater, On the computation of blow-up, Euro. J. Appl. Math., 1 (1990), pp. 47--71.
50.
Y. Tourigny and J. Sanz-Serna, The numerical study of blowup with application to a nonlinear Schrödinger equation, J. Comput. Phys., 102 (1992), pp. 407--416.
51.
R. Verfürth, A posteriori error estimates for nonlinear problems: ${L}^r(0, t; {L}^p({\Omega}))$-error estimates for finite element discretizations of parabolic equations, Math. Comp., 67 (1998), pp. 1335--1360.
52.
R. Verfürth, A posteriori error estimates for nonlinear problems: ${L}^r(0, t; {W}^{1,p}({\Omega}))$-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations, 14 (1998), pp. 487--518.
53.
R. Verfürth, A Posteriori Error Estimates for Non-linear Parabolic Equations, preprint, Ruhr-Universität Bochum, Fakultät für Mathematik, Bochum, Germany, 2004.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3833 - A3856
ISSN (online): 1095-7197

History

Submitted: 8 February 2016
Accepted: 19 September 2016
Published online: 20 December 2016

Keywords

  1. finite time blow-up
  2. conditional a posteriori error estimates
  3. IMEX method
  4. discontinuous Galerkin methods

MSC codes

  1. 65M15
  2. 65M50
  3. 65M60
  4. 35B44

Authors

Affiliations

Emmanuil H. Georgoulis

Funding Information

European Social Fund https://doi.org/10.13039/501100004895 : EdLL
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/L022745/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media