Open access

On Nonintrusive Uncertainty Quantification and Surrogate Model Construction in Particle Accelerator Modeling

Abstract

Using a cyclotron-based model problem, we demonstrate for the first time the applicability and usefulness of an uncertainty quantification (UQ) approach in order to construct surrogate models. The surrogate model quantities, for example, emittance, energy spread, or the halo parameter, can be used to construct a global sensitivity model along with error propagation and error analysis. The model problem is chosen such that it represents a template for general high-intensity particle accelerator modeling tasks. The usefulness and applicability of the presented UQ approach is then demonstrated on an ongoing research project, aiming at the design of a compact high-intensity cyclotron. The proposed UQ approach is based on polynomial chaos expansions and relies on a well-defined number of high-fidelity particle accelerator simulations. Important uncertainty sources are identified using Sobol' indices within the global sensitivity analysis.

Keywords

  1. particle accelerators
  2. polynomial chaos
  3. surrogate model
  4. sensitivity analysis
  5. UQTk

MSC codes

  1. 62P35
  2. 62H11
  3. 37L99
  4. 70F99

Formats available

You can view the full content in the following formats:

References

1.
R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7 (1998), pp. 1--49.
2.
H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc., 84 (1978), pp. 957--1041.
3.
S. Pauli, R. N. Gantner, P. Arbenz, and A. Adelmann, Multilevel Monte Carlo for the Feynman-Kac formula for the Laplace equation, BIT, 55 (2015), pp. 1125--1143.
4.
D. C. Montgomery, R. H. Myers, and C. M. Anderson-Cook, Response Surface Methodology, 3rd ed., Wiley, Hoboken, NJ, 2009.
5.
R. Tibshirani, T. Hastie, and J. Friedman, The Elements of Statistical Learning, 2nd ed., Springer, New York, 2009.
6.
N. Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897--936.
7.
K. Sargsyan, C. Safta, H. N. Najm, B. J. Debusschere, D. Ricciuto, and P. Thornton, Dimensionality reduction for complex models via Bayesian compressive sensing, Int. J. Uncertain. Quantif., 4 (2014), pp. 63--93.
8.
R. Ghanem, Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Engrg., 158 (1998), pp, 199--220.
9.
V. Fonoberov, T. Sahai, and S. Loire, Uncertainty as a stabilizer of the head-tail ordered phase in carbon-monoxide monolayers on graphite, Phys. Rev. B, 80 (2009), 115413.
10.
H. N. Najm, B. J. Debusschere, Y. M. Marzouk, S. Widmer, and O. P. Le Ma\^\itre, Uncertainty quantification in chemical systems, Internat. J. Numer. Methods Engrg., 80 (2009), pp. 789--814.
11.
H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 41 (2009), pp. 35--52.
12.
D. Xiu and G. E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187 (2003), pp. 137--167.
13.
B. Kouchmeshky and N. Zabaras, The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals, Comput. Mater. Sci., 47 (2009), pp. 342--352.
14.
M. Hadigol, K. Maute, and A. Doostan, On uncertainty quantification of lithium-ion batteries: Application to an lic$6$/licoo$2$ cell, J. Power Sources, 300 (2015), pp. 507--524.
15.
J. M. Pasini and T. Sahai, Polynomial Chaos Based Uncertainty Quantification in Hamiltonian, Multi-time Scale, and Chaotic Systems, preprint, https://arxiv.org/abs/1307.0065, 2013.
16.
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
17.
D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, NJ, 2010.
18.
R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. (2), 48 (1947), pp. 385--392.
19.
R. C. Smith, Uncertainty Quantification, SIAM, Philadelphia, 2014.
20.
H. K. H. Lee, B. Sanso, W. Zhou, and D. M. Higdon, Inferring particle distribution in a proton accelerator experiment, Bayesian Anal., 1 (2006), pp. 249--264.
21.
J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application, Phys. Rev. ST Accel. Beams, 13 (2010), 064201.
22.
Y. J. Bi, A Adelmann, R. Dölling, M. Humbel, W. Joho, M. Seidel, and T. J. Zhang, Towards quantitative simulations of high power proton cyclotrons, Phys. Rev. Spec. Top. Ac. and Beams, 14 (2011), 054402.
23.
D. Xiu and G. E. Karniadakis, The Wiener--Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619--644, https://doi.org/10.1137/S1064827501387826.
24.
S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry And Engineering, Perseus Books Group, New York, 2001.
25.
A. Bungau, A. Adelmann, J. R. Alonso, W. Barletta, R. Barlow, L. Bartoszek, L. Calabretta, A. Calanna, D. Campo, J. M. Conrad, Z. Djurcic, Y. Kamyshkov, M. H. Shaevitz, I. Shimizu, T. Smidt, J. Spitz, M. Wascko, L. A. Winslow, and J. J. Yang, Proposal for an electron antineutrino disappearance search using high-rate $^{8}{Li}$ production and decay, Phys. Rev. Lett., 109 (2012), 141802.
26.
H. Ogura, Orthogonal functions of the Poisson processes, IEEE Trans. Inform. Theory, 18 (1972), pp. 473--481.
27.
X. Wan and G. E. Karniadakis, Beyond Wiener-Askey expansions: Handling arbitrary PDFs, J. Sci. Comput., 27 (2006), pp. 455--464.
28.
F. Nobile, R. Tempone, and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2309--2345, https://doi.org/10.1137/060663660.
29.
N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, J. Comput. Phys., 227 (2008), pp. 4697--4735.
30.
T. Sahai, A. Surana, and A. Banaszuk, Iterative methods for scalable uncertainty quantification in complex networks, Int. J. Uncertain. Quantif., 2 (2012), pp. 1--49.
31.
A. Speranzon, T. Sahai, and A. Banaszuk, Hearing the clusters in a graph: A distributed algorithm, Automatica, 48 (2012), pp. 15--24.
32.
C. Liu, S. Klus, T. Sahai, and M. Dellnitz, An efficient algorithm for the parallel solution of high-dimensional differential equations, J. Comput. Appl. Math., 235 (2011), pp. 3053--3062.
33.
B. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. Le Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26 (2004), pp. 698--719, https://doi.org/10.1137/S1064827503427741.
34.
M. S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2009.
35.
S. Hosder, R. W. Walters, and R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2006-891, 2006.
36.
O. P. Le Ma\^\itre and O. M. Knio, Special Methods for Uncertainty Qualification: With Applications to Computational Fluid Dynamics, Sci. Comput., Springer, New York, 2010.
37.
A. Doostan and H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys., 230 (2011), pp. 3015--3030.
38.
I. M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation, 55 (2001), pp. 271--280.
39.
B. Debusschere, K. Sargsyan, and C. Safta, UQTk Version 2.1, Technical Report SAND2014-4968, Sandia National Laboratories, 2014.
40.
M. Abs, A. Adelmann, J. R. Alonso, W. A. Barletta, R. Barlow, L. Calabreta, A. Calanna, D. Campo, L. Celona, J. M. Conrad, S. Gammino, W. Kleeven, T. Koeth, M. Maggiore, H. Okuno, L. A. C. Piazza, M. Seidel, M. H. Shaevitz, L. Stingelin, J. J. Yang, and J. Yeck, Multimegawatt DAE$\delta$ALUS Cyclotrons for Neutrino Physics, preprint, https://arxiv.org/abs/1207.4895, 2012.
41.
J. D. Meiss, Symplectic maps, variational principles, and transport, Rev. Modern Phys., 64 (1992), pp. 795--848.
42.
H. Wiedemann, Particle Accelerator Physics, Springer, Berlin, 2007.
43.
J. J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T. J. Zhang, Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application, Phys. Rev. ST Accel. Beams, 13 (2010), 064201.
44.
R. Baartman, Intensity limitations in compact $h^-$ cyclotrons, in Proceedings of the 14th International Conference on Cyclotrons and Their Applications, Capetown, 1995, p. 440.
45.
A. Adelmann, P. Arbenz, and Y. Ineichen, A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations, J. Comput. Phys., 229 (2010), pp. 4554--4566.
46.
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Hilger, New York, 1988.
47.
M. M. Gordon and V. Taivassalo, Nonlinear effects of focusing bars used in the extraction systems of superconducting cyclotrons, IEEE Trans. Nucl. Sci., 32 (1985), pp. 2447--2449.
48.
J. J. Yang, A. Adelmann, W. Barletta, L. Calabretta, A. Calanna, D. Campo, and J. M. Conrad, Beam dynamics simulation for the high intensity cyclotrons, Nucl. Instrum. Methods Phys. Res. A, 704 (2013), pp. 84--91.
49.
Y. Ineichen, A. Adelmann, C. Bekas, A. Curioni, and P. Arbenz, A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators, Comput. Sci. Res. Dev., 28 (2013), pp. 185--192, https://doi.org/10.1007/s00450-012-0216-2.
50.
Y. Ineichen, A. Adelmann, A. Kolano, C. Bekas, A. Curioni, and P. Arbenz, A Parallel General Purpose Multi-objective Optimization Framework, with Application to Beam Dynamics, preprint, https://arxiv.org/abs/1302.2889, 2013.
51.
K. A. Olive et. al., Review of particle physics, 2014--2015. Review of particle properties, Chin. Phys. C, 38 (2014), 090001.
52.
G. H. Collin, C. A. Argüelles, J. M. Conrad, and M. H. Shaevitz, Sterile neutrino fits to short baseline data, Nucl. Phys. B, 908 (Supplement C) (2016), pp. 354--365.
53.
O. Mena and S. Parke, Untangling $cp$ violation and the mass hierarchy in long baseline experiments, Phys. Rev. D, 70 (2004), 093011.
54.
D. Winklehner, A. Adelmann, A. Gsell, T. Kaman, and D. Campo, Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework, Phys. Rev. Accel. Beams, 20 (2017), 124201.
55.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1996.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 383 - 416
ISSN (online): 2166-2525

History

Submitted: 18 February 2016
Accepted: 27 December 2018
Published online: 16 April 2019

Keywords

  1. particle accelerators
  2. polynomial chaos
  3. surrogate model
  4. sensitivity analysis
  5. UQTk

MSC codes

  1. 62P35
  2. 62H11
  3. 37L99
  4. 70F99

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media