Abstract

Statistical shape analysis can be done in a Riemannian framework by endowing the set of shapes with a Riemannian metric. Sobolev metrics of order two and higher on shape spaces of parametrized or unparametrized curves have several desirable properties not present in lower order metrics, but their discretization is still largely missing. In this paper, we present algorithms to numerically solve the geodesic initial and boundary value problems for these metrics. The combination of these algorithms enables one to compute Karcher means in a Riemannian gradient-based optimization scheme and perform principal component analysis and clustering. Our framework is sufficiently general to be applicable to a wide class of metrics. We demonstrate the effectiveness of our approach by analyzing a collection of shapes representing HeLa cell nuclei.

Keywords

  1. shape analysis
  2. shape registration
  3. Sobolev metric
  4. geodesics
  5. Karcher mean
  6. B-splines

MSC codes

  1. Primary
  2. 58B20
  3. 58E50; Secondary
  4. 49M25
  5. 68U05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Bauer and M. Bruveris, A new Riemannian setting for surface registration, in Proceedings of the 3rd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Toronto, 2011, pp. 182--194.
2.
M. Bauer, M. Bruveris, P. Harms, and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation, Ann. Global Anal. Geom., 41 (2012), pp. 461--472.
3.
M. Bauer, M. Bruveris, P. Harms, and J. Møller-Andersen, Curve matching with applications in medical imaging, in Proceedings of the 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Munich, 2015, pp. 83--94.
4.
M. Bauer, M. Bruveris, P. Harms, and J. Møller-Andersen, Second order elastic metrics on the shape space of curves, in Proceedings of the 1st International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes, Images, and Trajectories (DIFF-CV 2015), S. Kurtek, H. Drira, and P. Turaga, eds., BMVA Press, Durham, UK, 2015, pp. 9.1--9.11.
5.
M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves, Differential Geom. Appl., 34 (2014), pp. 139--165.
6.
M. Bauer, M. Bruveris, and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vis., 50 (2014), pp. 60--97.
7.
M. Bauer, M. Bruveris, and P. W. Michor, $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves, Geom. Imaging Comput., 1 (2014), pp. 1--56.
8.
M. Bauer, M. Eslitzbichler, and M. Grasmair, Landmark-Guided Elastic Shape Analysis of Human Character Motions, preprint, 2015, https://arxiv.org/abs/1502.07666.
9.
M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality, Differential Geom. Appl., 39 (2015), pp. 166--183.
10.
M. Bauer, P. Harms, and P. W. Michor, Sobolev metrics on shape space of surfaces, J. Geom. Mech., 3 (2011), pp. 389--438.
11.
M. V. Boland and R. F. Murphy, A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells, Bioinformatics, 17 (2001), pp. 1213--1223.
12.
N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, MANOPT, a MATLAB toolbox for optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455--1459.
13.
H. Brass and K. Petras, Quadrature Theory: The Theory of Numerical Integration on a Compact Interval, Math. Surveys Monogr. 178, American Mathematical Society, Providence, RI, 2011.
14.
M. Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom. Mech., 7 (2015), pp. 125--150.
15.
M. Bruveris, P. W. Michor, and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves, Forum Math. Sigma, 2 (2014), e19.
16.
V. Cervera, F. Mascaró, and P. W. Michor, The action of the diffeomorphism group on the space of immersions, Differential Geom. Appl., 1 (1991), pp. 391--401.
17.
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
18.
M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds, The Visual Computer, 31 (2015), pp. 1179--1190.
19.
M. I. Miller, G. E. Christensen, and R. D. Rabbitt, Deformable templates using large deformation kinematics, IEEE Trans. Image Process., 5 (1996), pp. 1435--1447.
20.
R. Kucharsky Hiess, R. Alter, S. Sojoudi, B. A. Ardekani, R. Kuzniecky, and H. R. Pardoe, Corpus callosum area and brain volume in autism spectrum disorder: Quantitative analysis of structural MRI from the abide database, J. Autism Dev. Disord., 45 (2015), pp. 3107--3114.
21.
E. Klassen, A. Srivastava, W. Mio, and S. H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 372--383.
22.
H. Kodama and P. W. Michor, The homotopy type of the space of degree $0$-immersed plane curves, Rev. Mat. Complut., 19 (2006), pp. 227--234.
23.
A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Math. Surveys Monogr. 53, American Mathematical Society, Providence, RI, 1997.
24.
H. Krim and A. Yezzi, Jr., eds., Statistics and Analysis of Shapes, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2006.
25.
H. Laga, S. Kurtek, A. Srivastava, and S. J. Miklavcic, Landmark-free statistical analysis of the shape of plant leaves, J. Theoret. Biol., 363 (2014), pp. 41--52.
26.
W. A. Light and E. W. Cheney, Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer-Verlag, Berlin, 1985.
27.
P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8 (2006), pp. 1--48.
28.
P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), pp. 74--113.
29.
G. Nardi, G. Peyré, and F.-X. Vialard, Geodesics on shape spaces with bounded variation and Sobolev metrics, SIAM J. Imaging Sci., 9 (2016), pp. 238--274, https://doi.org/10.1137/15100518X.
30.
S. M. Nikolsky, On boundary properties of differentiable functions of several variables, Dokl. Akad. Nauk SSSR, 146 (1962), pp. 542--545 (in Russian).
31.
S. M. Nikolsky, On stable boundary values of differentiable functions of several variables, Mat. Sb., 61 (1965), pp. 224--252 (in Russian).
32.
N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Systems Man Cybernet., 9 (1979), pp. 62--66.
33.
X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, J. Math. Imaging Vision, 25 (2006), pp. 127--154.
34.
G. K. Rohde, A. J. S. Ribeiro, K. N. Dahl, and R. F. Murphy, Deformation-based nuclear morphometry: Capturing nuclear shape variation in HeLa cells, Cytometry A, 73 (2008), pp. 341--350.
35.
M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus, IMA J. Numer. Anal., 35 (2015), pp. 1011--1046.
36.
H.-J. Schmeisser, Recent developments in the theory of function spaces with dominating mixed smoothness, in Proceedings of NAFSA 8�---Nonlinear Analysis, Function Spaces, and Applications, Vol. 8, Czech. Acad. Sci., Prague, 2007, pp. 144--204.
37.
L. L. Schumaker, Spline Functions: Basic Theory, 3rd ed., Cambridge Math. Library, Cambridge University Press, Cambridge, UK, 2007.
38.
W. Sickel and T. Ullrich, Tensor products of Sobolev--Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Theory, 161 (2009), pp. 748--786.
39.
A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces, IEEE Trans. Pattern Anal., 33 (2011), pp. 1415--1428.
40.
J. Su, S. Kurtek, E. Klassen, and A. Srivastava, Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance, Ann. Appl. Stat., 8 (2014), pp. 530--552.
41.
J. Su, A. Srivastava, F. D. M. de Souza, and S. Sarkar, Rate-invariant analysis of trajectories on Riemannian manifolds with application in visual speech recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 620--627.
42.
G. Sundaramoorthi, A. Mennucci, S. Soatto, and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci., 4 (2011), pp. 109--145, https://doi.org/10.1137/090781139.
43.
G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci, Coarse-to-fine segmentation and tracking using Sobolev active contours, IEEE Trans. Pattern Anal. Mach. Intell., 30 (2008), pp. 851--864.
44.
J. Vyb\iral, Function spaces with dominating mixed smoothness, Dissertationes Math. (Rozprawy Mat.), 436 (2006), pp. 1--73.
45.
Q. Xie, S. Kurtek, and A. Srivastava, Analysis of AneuRisk$65$ data: Elastic shape registration of curves, Electron. J. Stat., 8 (2014), pp. 1920--1929.
46.
L. Younes, Spaces and manifolds of shapes in computer vision: An overview, Image Vision Comput., 30 (2012), pp. 389--397.
47.
L. Younes, P. W. Michor, J. Shah, and D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 19 (2008), pp. 25--57.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 47 - 73
ISSN (online): 1936-4954

History

Submitted: 17 March 2016
Accepted: 13 October 2016
Published online: 12 January 2017

Keywords

  1. shape analysis
  2. shape registration
  3. Sobolev metric
  4. geodesics
  5. Karcher mean
  6. B-splines

MSC codes

  1. Primary
  2. 58B20
  3. 58E50; Secondary
  4. 49M25
  5. 68U05

Authors

Affiliations

Jakob Møller-Andersen

Funding Information

Austrian Science Fund http://dx.doi.org/10.13039/501100002428 : P246251

Funding Information

Brunel University London http://dx.doi.org/10.13039/501100007914 : BRIEF award

Funding Information

Erwin Schrödinger International Institute for Mathematical Physics http://dx.doi.org/10.13039/501100003066

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media