Software and High-Performance Computing

Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting

Abstract

In this paper we present an algorithm for computing a low rank approximation of a sparse matrix based on a truncated LU factorization with column and row permutations. We present various approaches for determining the column and row permutations that show a trade-off between speed versus deterministic/probabilistic accuracy. We show that if the permutations are chosen by using tournament pivoting based on QR factorization, then the obtained truncated LU factorization with column/row tournament pivoting, LU_CRTP, satisfies bounds on the singular values which have similarities with the ones obtained by a communication avoiding rank revealing QR factorization. Experiments on challenging matrices show that LU_CRTP provides a good low rank approximation of the input matrix and it is less expensive than the rank revealing QR factorization in terms of computational and memory usage costs, while also minimizing the communication cost. We also compare the computational complexity of our algorithm with randomized algorithms and show that for sparse matrices and high enough but still modest accuracies, our approach is faster.

Keywords

  1. rank revealing
  2. LU and QR factorizations
  3. column pivoting
  4. minimize communication

MSC codes

  1. 65F25
  2. 65F20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, SIAM, Philadelphia, 1999.
2.
G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in numerical linear algebra, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 866--901.
3.
C. H. Bischof, A parallel QR factorization algorithm with controlled local pivoting, SIAM J. Sci. and Stat. Comput., 12 (1991), pp. 36--57.
4.
P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transformations, Numer. Math., 7 (1965), pp. 269--276.
5.
S. Chandrasekaran and I. C. F. Ipsen, On rank-revealing factorisations, SIAM. J. Matrix Anal. Appl., 15 (1994), pp. 592--622.
6.
K. L. Clarkson and D. P. Woodruff, Low rank approximation and regression in input sparsity time, in Proceedings of the 45th Annual ACM Symposium on Theory of Computing, 2013, pp. 81--90.
7.
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I: Theory, SIAM, Philadelphia, 2002.
8.
T. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization, ACM Trans. Math. Software, 38 (2011), pp. 8:1--8:22.
9.
T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, A column approximate minimum degree ordering algorithm, ACM Trans. Math. Software, 30 (2004), pp. 353--376.
10.
T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Software, 38 (2011), pp. 1--25. .
11.
J. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication-avoiding rank-revealing QR decomposition, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 55--89.
12.
J. Demmel, L. Grigori, M. Gu, and H. Xiang, LU with Tournament Pivoting for Nearly Singular Matrices, Technical report, Inria and UC Berkeley, 2018, in preparation.
13.
J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. 206--239.
14.
J. W. Demmel, N. J. Higham, and R. Schreiber, Block LU factorization, Numer. Linear Algebra Appl., 2 (1995), pp. 173--190.
15.
L. Foster, San Jose State University Singular Matrix Database, http://www.math.sjsu.edu/singular/matrices/.
16.
A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345--363.
17.
A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.
18.
A. George, J. W.-H. Liu, and E. G.-Y. Ng, A data structure for sparse QR and LU factors, SIAM J. Sci. and Stat. Comput., 9 (1988), pp. 100--121.
19.
J. R. Gilbert, E. G. Ng, and B. W. Peyton, Separators and structure prediction in sparse orthogonal factorization, Linear Algebra Appl., 262 (1997).
20.
G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), pp. 206--216.
21.
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013.
22.
Z. N. Goreinov SA, Tyrtyshnikov EE, A theory of pseudoskeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1--21.
23.
L. Grigori, S. Cayrols, and J. Demmel, Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting, Technical report 8910, Inria, 2016.
24.
L. Grigori, J. W. Demmel, and H. Xiang, CALU: A communication optimal LU factorization algorithm, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1317--1350.
25.
M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848--869.
26.
N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217--288.
27.
P. C. Hansen, Regularization tools version 4.1 for MATLAB 7.3.
28.
Y. P. Hong and C.-T. Pan, Rank-revealing QR factorizations and the singular value decomposition, Math. Comp., 58 (1992), pp. 213--232.
29.
G. Karypis and V. Kumar, A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Matrices---Version 4.0, http://glaros.dtc.umn.edu/gkhome/views/metis, 1998.
30.
A. Khabou, J. W. Demmel, L. Grigori, and M. Gu, Communication avoiding LU factorization with panel rank revealing pivoting, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1401--1429.
31.
R. L. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177--189.
32.
M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn., 3 (2011), pp. 123--224.
33.
L. Miranian and M. Gu, Strong rank revealing LU factorizations, Linear Algebra Appl., (2003), pp. 1--16.
34.
C.-T. Pan, On the existence and computation of rank-revealing LU factorizations, Linear Algebra Appl., 316 (2000), pp. 199--222.
35.
Y. Saad, Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM, Philadelphia, 2011.
36.
G. Stewart, Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix, Numer. Math., 83 (1999), pp. 313--323.
37.
G. W. Stewart, The QLP approximation to the singular value decomposition, SIAM J. Sci. Comput., 20 (1999), pp. 1336--1348.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C181 - C209
ISSN (online): 1095-7197

History

Submitted: 9 May 2016
Accepted: 11 August 2016
Published online: 15 March 2018

Keywords

  1. rank revealing
  2. LU and QR factorizations
  3. column pivoting
  4. minimize communication

MSC codes

  1. 65F25
  2. 65F20

Authors

Affiliations

Funding Information

Defense Advanced Research Projects Agency https://doi.org/10.13039/100000185 : HR0011-12-2-0016

Funding Information

Office of Science https://doi.org/10.13039/100006132 : DE-SC0008700, DE-SC0010200, AC02-05CH11231

Funding Information

Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 671633

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media