Abstract

We prove the convergence of a spectral discretization of the Vlasov--Poisson system. The velocity term of the Vlasov equation is discretized using either Hermite functions on the infinite domain or Legendre polynomials on a bounded domain. The spatial term of the Vlasov and Poisson equations is discretized using periodic Fourier expansions. Boundary conditions are treated in weak form through a penalty type term that can be applied also in the Hermite case. As a matter of fact, stability properties of the approximated scheme descend from this added term. The convergence analysis is carried out in detail for the 1D-1V case, but results can be generalized to multidimensional domains, obtained as Cartesian product, in both space and velocity. The error estimates show the spectral convergence under suitable regularity assumptions on the exact solution.

Keywords

  1. Hermite spectral method
  2. Legendre spectral method
  3. Vlasov equation
  4. Vlasov--Poisson system

MSC codes

  1. 65N35
  2. 65N12
  3. 35L02

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. P. Armstrong, R. C. Harding, G. Knorr, and D. Montgomery, Solution of Vlasov's equation by transform methods, Methods Comput. Phys., 9 (1970), p. 29.
2.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, CRC Press, Boca Raton, FL, 2004.
3.
E. Camporeale, G. L. Delzanno, B. K. Bergen, and J. D. Moulton, On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods, Comput. Phys. Comm., 198 (2015), pp. 47--58.
4.
E. Camporeale, G. L. Delzanno, G. Lapenta, and W. Daughton, New approach for the study of linear Vlasov stability of inhomogeneous systems, Phys. Plasmas, 13 (2006), 092110.
5.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, Berlin, Heidelberg, 1988.
6.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Scientific Computation, Springer, Berlin, Heidelberg, 2010.
7.
C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), pp. 67--86.
8.
C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330--351.
9.
G. L. Delzanno, Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301 (2015), pp. 338--356.
10.
F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166--187.
11.
R. Fitzpatrick, Plasma Physics, CRC Press, Boca Raton, FL, 2014.
12.
D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics Monographs 8, Springer, Berlin, Heidelberg, 1992.
13.
R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, Plasma Physics Series, Institute of Physics Philadelphia, 1995.
14.
R. Hockney and J. Eastwood, Computer Simulation Using Particles, CRC Press, Boca Raton, FL, 1988.
15.
J. P. Holloway, Spectral velocity discretizations for the Vlasov-Maxwell equations, Transport Theory Statist. Phys., 25 (1996), pp. 1--32.
16.
L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.
17.
N. F. Loureiro, W. Dorland, L. Fazendeiro, A. Kanekar, A. Mallet, M. S. Vilelas, and A. Zocco, Viriato: A Fourier-Hermite Spectral Code for Strongly Magnetised Fluid-Kinetic Plasma Dynamics, preprint, arXiv:1505.02649, 2015.
18.
N. F. Loureiro, A. A. Schekochihin, and A. Zocco, Fast collisionless reconnection and electron heating in strongly magnetized plasmas, Phys. Rev. Lett., 111 (2013), 025002.
19.
H. Ma and W. Sun, A Legendre--Petrov--Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), pp. 1425--1438, https://doi.org/10.1137/S0036142999361505.
20.
G. Manzini, G. L. Delzanno, J. Vencels, and S. Markidis, A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys., 317 (2016), pp. 82--107, doi:10.1016/j.jcp.2016.03.069.
21.
J. T. Parker and P. J. Dellar, Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit, J. Plasma Phys., 81 (2015), 305810203.
22.
M. Pulvirenti and J. Wick, Convergence of Galerkin approximation for two-dimensional Vlasov-Poisson equation, Z. Angew. Math. Phys., 35 (1984), pp. 790--801, https://doi.org/10.1007/BF00945444.
23.
J. Shen, A new dual-Petrov--Galerkin method for third and higher odd-order differential equations: Application to the KDV equation, SIAM J. Numer. Anal., 41 (2003), pp. 1595--1619.
24.
J. Shen, T. Tang, and L.-L. Wang, Spectral Methods, Algorithms, Analysis and Applications, Springer, New York, 2011.
25.
S. L. Sobolev, Partial Differential Equations of Mathematical Physics, Dover, New York, 1964.
26.
J. Vencels, G. L. Delzanno, A. Johnson, I. B. Peng, E. Laure, and S. Markidis, Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments, Procedia Comput. Sci., 51 (2015), pp. 1148--1157.
27.
J. Vencels, G. L. Delzanno, G. Manzini, S. Markidis, I. Bo Peng, and V. Roytershteyn, SpectralPlasmaSolver: A spectral code for multiscale simulations of collisionless, magnetized plasmas, J. Phys. Conference Ser., 719 (2016), 012022.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2312 - 2335
ISSN (online): 1095-7170

History

Submitted: 24 May 2016
Accepted: 25 April 2017
Published online: 26 September 2017

Keywords

  1. Hermite spectral method
  2. Legendre spectral method
  3. Vlasov equation
  4. Vlasov--Poisson system

MSC codes

  1. 65N35
  2. 65N12
  3. 35L02

Authors

Affiliations

Funding Information

Los Alamos National Laboratory https://doi.org/10.13039/100008902 : DE-AC52-06NA25396

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media