We analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

  • 1.  E. L. Allgower and  K. Böhmer , Application of the mesh independence principle to mesh refinement strategies , SIAM J. Numer. Anal. , 24 ( 1987 ), pp. 1335 -- 1351 , https://doi.org/10.1137/0724086. LinkISIGoogle Scholar

  • 2.  E. L. Allgower K. Böhmer F. A. Potra and  W. C. Rhienboldt , A mesh-independence principle for operator equations and their discretizations , SIAM J. Numer. Anal. , 23 ( 1986 ), pp. 160 -- 169 , https://doi.org/10.1137/0723011. LinkISIGoogle Scholar

  • 3.  D. G. Anderson , Iterative procedures for nonlinear integral equations , J. ACM , 12 ( 1965 ), pp. 547 -- 560 . CrossrefISIGoogle Scholar

  • 4.  I. W. Busbridge , The Mathematics of Radiative Transfer , Cambridge Tracts 50, Cambridge University Press , Cambridge, UK, 1960 . Google Scholar

  • 5.  N. N. Carlson and  K. Miller , Design and application of a gradient-weighted moving finite element code I: In one dimension , SIAM J. Sci. Comput. , 19 ( 1998 ), pp. 728 -- 765 , https://doi.org/10.1137/S106482759426955X. LinkISIGoogle Scholar

  • 6.  S. Chandrasekhar , Radiative Transfer , Dover , New York , 1960 . Google Scholar

  • 7.  A. M. Collier A. C. Hindmarsh R. Serban and  C. S. Woodward , User Documentation for KINSOL v2.8.0 , Tech. Report UCRL-SM-208116, Lawrence Livermore National Laboratory , Livermore, CA , 2015 . Google Scholar

  • 8.  B. Collins T. Downar J. Gehin A. Godfrey A. Graham D. Jabaay B. Kelley K. Clarno K. Kim B. Kochunas E. Larsen Y. Liu Z. Liu W. Martin S. Palmtag M. Rose T. Saller S. Stimpson T. Trahan J. Wang W. Wieselquist M. Young and  A. Zhu , MPACT Theory Manual , Tech. Report CASL-U-2015-0078-000, Consortium for Advanced Simulation of LWRs , 2015 . Google Scholar

  • 9.  J. E. Dennis and  H. F. Walker , Inaccuracy in quasi-Newton methods: Local improvement theorems, in Mathematical Programming at Oberwolfach II, Mathematical Programming Study 22 , North--Holland , Amsterdam , 1984 , pp. 70 -- 85 . Google Scholar

  • 10.  T. Evans S. Hamilton and  S. Slattery , ORNL-CEES/Profugus , Oak Ridge National Laboratory , 2016 , https://github.com/ORNL-CEES/Profugus. Google Scholar

  • 11.  W. R. Ferng and  C. T. Kelley , Mesh independence of matrix-free methods for path following , SIAM J. Sci. Comput. , 21 ( 2000 ), pp. 1835 -- 1850 , https://doi.org/10.1137/S1064827598339360. LinkISIGoogle Scholar

  • 12.  D. Gaston C. Newman and  G. Hansen , MOOSE: A parallel computational framework for coupled systems of nonlinear equations , Nuclear Engineering and Design , 239 ( 2009 ), pp. 1768 -- 1778 , https://doi.org/10.1016/j.nucengdes.2009.05.021. CrossrefISIGoogle Scholar

  • 13.  J. Hales S. Novascone G. Pastore D. Perez B. Spencer and  R. Williamson , BISON Theory Manual , Tech. Report October, Fuels Modeling and Simulation Department, Idaho National Laboratory , 2013 , https://neup.inl.gov/SiteAssets/FY2014%20Documents/BISON_theory_manual.pdf. Google Scholar

  • 14.  S. Hamilton M. Berrill K. Clarno R. Pawlowski A. Toth C. T. Kelley T. Evans and  B. Philip , An assessment of coupling algorithms for nuclear reactor core physics simulations , J. Comput. Phys. , 311 ( 2016 ), pp. 241 -- 257 . CrossrefISIGoogle Scholar

  • 15.  C. T. Kelley , Iterative Methods for Linear and Nonlinear Equations , Frontiers Appl. Math. 16 , SIAM , Philadelphia , 1995 . LinkGoogle Scholar

  • 16.  C. T. Kelley and  E. W. Sachs , Mesh independence of Newton-like methods for infinite dimensional problems , J. Int. Eq. Appl. , 3 ( 1991 ), pp. 549 -- 573 . CrossrefGoogle Scholar

  • 17.  D. A. Knoll H. Park and  K. Smith , Application of the Jacobian-free Newton-Krylov method to nonlinear acceleration of transport source iteration in slab geometry , Nuclear Sci. Eng. , 167 ( 2011 ), pp. 122 -- 132 . CrossrefISIGoogle Scholar

  • 18.  K. N. Kudin G. E. Scuseria and  E. Cancès , A black-box self-consistent field convergence algorithm: One step closer , J. Chem. Phys. , 116 ( 2002 ), pp. 8255 -- 8261 , https://doi.org/10.1063/1.1470195. CrossrefISIGoogle Scholar

  • 19.  E. Lewis and  W. Miller , Computational Methods of Neutron Transport , American Nuclear Society , La Grange Park, IL , 1993 . Google Scholar

  • 20.  L. Lin and  C. Yang , Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn--Sham density functional theory , SIAM J. Sci. Comput. , 35 ( 2013 ), pp. S277 -- S298 , https://doi.org/10.1137/120880604. LinkISIGoogle Scholar

  • 21.  P. A. Lott H. F. Walker C. S. Woodward and  U. M. Yang , An accelerated Picard method for nonlinear systems related to variably saturated flow , Adv. Water Res. , 38 ( 2012 ), pp. 92 -- 101 . CrossrefISIGoogle Scholar

  • 22.  K. Miller Krylov and moving nodes in the method of lines , J. Comput. Appl. Math. , 183 ( 2005 ), pp. 275 -- 287 . CrossrefISIGoogle Scholar

  • 23.  L. Monti and  T. Schulenberg , Coupled ERANOS/TRACE system for HPLWR \textup3 pass core analyses , in International Conference on Mathematics, Computational Methods and Reactor Physics , Saratoga Springs, NY , 2009 , pp. 1 -- 14 . Google Scholar

  • 24.  C. W. Oosterlee and  T. Washio , Krylov subspace acceleration for nonlinear multigrid with application to recirculating flows , SIAM J. Sci. Comput. , 21 ( 2000 ), pp. 1670 -- 1690 , https://doi.org/10.1137/S1064827598338093. LinkISIGoogle Scholar

  • 25.  R. Pawlowski K. Clarno R. Montgomery R. Salko T. Evans J. Turner and  D. Gaston , Design of a high fidelity core simulator for analysis of pellet clad interaction , in Proceedings of the ANS MC2015 -- Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method , vol. ANS MC 2015 CD, Nashville, TN , 2015 . Google Scholar

  • 26.  P. Pulay , Convergence acceleration of iterative sequences. The case of SCF iteration , Chem. Phys. Lett. , 73 ( 1980 ), pp. 393 -- 398 . CrossrefISIGoogle Scholar

  • 27.  P. Pulay SCF convergence acceleration , J. Comput. Chem. , 3 ( 1982 ), pp. 556 -- 560 . CrossrefISIGoogle Scholar

  • 28.  T. Rohwedder and  R. Schneider , An analysis for the DIIS acceleration method used in quantum chemistry calculations , J. Math. Chem. , 49 ( 2011 ), pp. 1889 -- 1914 . CrossrefISIGoogle Scholar

  • 29.  R. Salko and  M. Avramova , CTF Theory Manual , Tech. Report CASL-U-2015-0054-000, Consortium for Advanced Simulation of LWRs , 2015 . Google Scholar

  • 30.  R. Schneider T. Rohwedder A. Neelov and  J. Blauert , Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure , J. Comput. Math. , 27 ( 2008 ), pp. 360 -- 387 . ISIGoogle Scholar

  • 31.  V. Simoncini and  D. B. Szyld , Flexible inner-outer Krylov subspace methods , SIAM J. Numer. Anal. , 40 ( 2003 ), pp. 2219 -- 2239 , https://doi.org/10.1137/S0036142902401074. LinkISIGoogle Scholar

  • 32.  V. Simoncini and  D. B. Szyld , Theory of inexact Krylov subspace methods and applications to scientific computing , SIAM J. Sci. Comput. , 25 ( 2003 ), pp. 454 -- 477 , https://doi.org/10.1137/S1064827502406415. LinkISIGoogle Scholar

  • 33.  V. Simoncini and  D. B. Szyld , Recent computational developments in Krylov subspace methods for linear systems , Numer. Linear Algebra Appl. , 14 ( 2007 ), pp. 1 -- 59 . CrossrefISIGoogle Scholar

  • 34.  SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic Solvers), http://www.llnl.gov/casc/sundials.Google Scholar

  • 35.  A. Toth and  C. T. Kelley , Convergence analysis for Anderson acceleration , SIAM J. Numer. Anal. , 53 ( 2015 ), pp. 805 -- 819 , https://doi.org/10.1137/130919398. LinkISIGoogle Scholar

  • 36.  A. Toth C. T. Kelley S. Slattery S. Hamilton K. Clarno and  R. Pawlowski , Analysis of Anderson acceleration on a simplified neutronics/thermal hydraulics system , in Proceedings of the ANS MC2015 -- Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method , vol. ANS MC 2015 CD, Nashville, TN , 2015 . Google Scholar

  • 37.  A. Toth and  R. Pawlowski , NOX::Solver::AndersonAcceleration Class Reference, https://trilinos.org/docs/dev/packages/nox/doc/html/classNOX_1_1Solver_1_1AndersonAcceleration.html ( 2015 ). , https://trilinos.org/docs/dev/packages/nox/doc/html/classNOX_1_1Solver_1_1AndersonAcceleration.html. Google Scholar

  • 38.  H. W. Walker . Ni, Anderson acceleration for fixed-point iterations , SIAM J. Numer. Anal. , 49 ( 2011 ), pp. 1715 -- 1735 , https://doi.org/10.1137/10078356X. LinkISIGoogle Scholar

  • 39.  T. Washio and  C. Oosterlee , Krylov subspace acceleration for nonlinear multigrid schemes , Electron. Trans. Numer. Anal. , 6 ( 1997 ), pp. 271 -- 290 . Google Scholar

  • 40.  J. Willert , Hybrid Deterministic/Monte Carlo Methods for Solving the Neutron Transport Equation and $k$-Eigenvalue Problem , Ph.D. thesis, North Carolina State University , Raleigh, NC , 2013 . Google Scholar

  • 41.  J. Willert X. Chen and  C. T. Kelley , Newton's method for Monte Carlo--based residuals , SIAM J. Numer. Anal. , 53 ( 2015 ), pp. 1738 -- 1757 , https://doi.org/10.1137/130905691. LinkISIGoogle Scholar

  • 42.  J. Willert C. T. Kelley D. A. Knoll and  H. K. Park , Hybrid deterministic/Monte Carlo neutronics , SIAM J. Sci. Comput. , 35 ( 2013 ), pp. S62 -- S83 , https://doi.org/10.1137/120880021. LinkISIGoogle Scholar

  • 43.  J. Yan B. Kochunas M. Hursin T. Downar Z. Karoutas and  E. Baglietto , Coupled computational fluid dynamics and MOC neutronic simulations of Westinghouse PWR fuel assemblies with grid spacers , in 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics , Toronto, Ontario , 2011 . Google Scholar