Abstract

We analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

Keywords

  1. nonlinear equations
  2. Anderson acceleration
  3. local improvement

MSC codes

  1. 65H10
  2. 82D75

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations

Authors: Alex Toth, J. Austin Ellis Tom Evans, Steven Hamilton, C. T. Kelley, Roger Pawlowski, Stuart Slattery

File: Matlab_Kelley_SISC.zip

Type: Compressed Matlab code files

Contents: Matlab files for example: Section 3.1

"heq_anderson_kelley.m" is the driver to produce figure 1 in the paper. The driver uses anderson_optset to configure the solve and anderson_kelley to solve the equations.

"anderson_optset.m" is the options control for Anderson Acceleration code.

"anderson_kelley.m" is the main Anderson Acceleration code.

These three files enable a reader to reproduce the results in section 3.1. The other two examples use large codes, some of which are proprietary, and are not reproducable by others at the present time.

References

1.
E. L. Allgower and K. Böhmer, Application of the mesh independence principle to mesh refinement strategies, SIAM J. Numer. Anal., 24 (1987), pp. 1335--1351, https://doi.org/10.1137/0724086.
2.
E. L. Allgower, K. Böhmer, F. A. Potra, and W. C. Rhienboldt, A mesh-independence principle for operator equations and their discretizations, SIAM J. Numer. Anal., 23 (1986), pp. 160--169, https://doi.org/10.1137/0723011.
3.
D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 12 (1965), pp. 547--560.
4.
I. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Tracts 50, Cambridge University Press, Cambridge, UK, 1960.
5.
N. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code I: In one dimension, SIAM J. Sci. Comput., 19 (1998), pp. 728--765, https://doi.org/10.1137/S106482759426955X.
6.
S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
7.
A. M. Collier, A. C. Hindmarsh, R. Serban, and C. S. Woodward, User Documentation for KINSOL v2.8.0, Tech. Report UCRL-SM-208116, Lawrence Livermore National Laboratory, Livermore, CA, 2015.
8.
B. Collins, T. Downar, J. Gehin, A. Godfrey, A. Graham, D. Jabaay, B. Kelley, K. Clarno, K. Kim, B. Kochunas, E. Larsen, Y. Liu, Z. Liu, W. Martin, S. Palmtag, M. Rose, T. Saller, S. Stimpson, T. Trahan, J. Wang, W. Wieselquist, M. Young, and A. Zhu, MPACT Theory Manual, Tech. Report CASL-U-2015-0078-000, Consortium for Advanced Simulation of LWRs, 2015.
9.
J. E. Dennis and H. F. Walker, Inaccuracy in quasi-Newton methods: Local improvement theorems, in Mathematical Programming at Oberwolfach II, Mathematical Programming Study 22, North--Holland, Amsterdam, 1984, pp. 70--85.
10.
T. Evans, S. Hamilton, and S. Slattery, ORNL-CEES/Profugus, Oak Ridge National Laboratory, 2016, https://github.com/ORNL-CEES/Profugus.
11.
W. R. Ferng and C. T. Kelley, Mesh independence of matrix-free methods for path following, SIAM J. Sci. Comput., 21 (2000), pp. 1835--1850, https://doi.org/10.1137/S1064827598339360.
12.
D. Gaston, C. Newman, and G. Hansen, MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design, 239 (2009), pp. 1768--1778, https://doi.org/10.1016/j.nucengdes.2009.05.021.
13.
J. Hales, S. Novascone, G. Pastore, D. Perez, B. Spencer, and R. Williamson, BISON Theory Manual, Tech. Report October, Fuels Modeling and Simulation Department, Idaho National Laboratory, 2013, https://neup.inl.gov/SiteAssets/FY2014%20Documents/BISON_theory_manual.pdf.
14.
S. Hamilton, M. Berrill, K. Clarno, R. Pawlowski, A. Toth, C. T. Kelley, T. Evans, and B. Philip, An assessment of coupling algorithms for nuclear reactor core physics simulations, J. Comput. Phys., 311 (2016), pp. 241--257.
15.
C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers Appl. Math. 16, SIAM, Philadelphia, 1995.
16.
C. T. Kelley and E. W. Sachs, Mesh independence of Newton-like methods for infinite dimensional problems, J. Int. Eq. Appl., 3 (1991), pp. 549--573.
17.
D. A. Knoll, H. Park, and K. Smith, Application of the Jacobian-free Newton-Krylov method to nonlinear acceleration of transport source iteration in slab geometry, Nuclear Sci. Eng., 167 (2011), pp. 122--132.
18.
K. N. Kudin, G. E. Scuseria, and E. Cancès, A black-box self-consistent field convergence algorithm: One step closer, J. Chem. Phys., 116 (2002), pp. 8255--8261, https://doi.org/10.1063/1.1470195.
19.
E. Lewis and W. Miller, Computational Methods of Neutron Transport, American Nuclear Society, LaGrange Park, IL, 1993.
20.
L. Lin and C. Yang, Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn--Sham density functional theory, SIAM J. Sci. Comput., 35 (2013), pp. S277--S298, https://doi.org/10.1137/120880604.
21.
P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated Picard method for nonlinear systems related to variably saturated flow, Adv. Water Res., 38 (2012), pp. 92--101.
22.
K. Miller, Nonlinear Krylov and moving nodes in the method of lines, J. Comput. Appl. Math., 183 (2005), pp. 275--287.
23.
L. Monti and T. Schulenberg, Coupled ERANOS/TRACE system for HPLWR \textup3 pass core analyses, in International Conference on Mathematics, Computational Methods and Reactor Physics, Saratoga Springs, NY, 2009, pp. 1--14.
24.
C. W. Oosterlee and T. Washio, Krylov subspace acceleration for nonlinear multigrid with application to recirculating flows, SIAM J. Sci. Comput., 21 (2000), pp. 1670--1690, https://doi.org/10.1137/S1064827598338093.
25.
R. Pawlowski, K. Clarno, R. Montgomery, R. Salko, T. Evans, J. Turner, and D. Gaston, Design of a high fidelity core simulator for analysis of pellet clad interaction, in Proceedings of the ANS MC2015 -- Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, vol. ANS MC2015 CD, Nashville, TN, 2015.
26.
P. Pulay, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett., 73 (1980), pp. 393--398.
27.
P. Pulay, Improved SCF convergence acceleration, J. Comput. Chem., 3 (1982), pp. 556--560.
28.
T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), pp. 1889--1914.
29.
R. Salko and M. Avramova, CTF Theory Manual, Tech. Report CASL-U-2015-0054-000, Consortium for Advanced Simulation of LWRs, 2015.
30.
R. Schneider, T. Rohwedder, A. Neelov, and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure, J. Comput. Math., 27 (2008), pp. 360--387.
31.
V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer. Anal., 40 (2003), pp. 2219--2239, https://doi.org/10.1137/S0036142902401074.
32.
V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454--477, https://doi.org/10.1137/S1064827502406415.
33.
V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1--59.
34.
SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic Solvers), http://www.llnl.gov/casc/sundials.
35.
A. Toth and C. T. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal., 53 (2015), pp. 805--819, https://doi.org/10.1137/130919398.
36.
A. Toth, C. T. Kelley, S. Slattery, S. Hamilton, K. Clarno, and R. Pawlowski, Analysis of Anderson acceleration on a simplified neutronics/thermal hydraulics system, in Proceedings of the ANS MC2015 -- Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, vol. ANS MC2015 CD, Nashville, TN, 2015.
37.
A. Toth and R. Pawlowski, NOX::Solver::AndersonAcceleration Class Reference, https://trilinos.org/docs/dev/packages/nox/doc/html/classNOX_1_1Solver_1_1AndersonAcceleration.html (2015).
38.
H. W. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011), pp. 1715--1735, https://doi.org/10.1137/10078356X.
39.
T. Washio and C. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes, Electron. Trans. Numer. Anal., 6 (1997), pp. 271--290.
40.
J. Willert, Hybrid Deterministic/Monte Carlo Methods for Solving the Neutron Transport Equation and $k$-Eigenvalue Problem, Ph.D. thesis, North Carolina State University, Raleigh, NC, 2013.
41.
J. Willert, X. Chen, and C. T. Kelley, Newton's method for Monte Carlo--based residuals, SIAM J. Numer. Anal., 53 (2015), pp. 1738--1757, https://doi.org/10.1137/130905691.
42.
J. Willert, C. T. Kelley, D. A. Knoll, and H. K. Park, Hybrid deterministic/Monte Carlo neutronics, SIAM J. Sci. Comput., 35 (2013), pp. S62--S83, https://doi.org/10.1137/120880021.
43.
J. Yan, B. Kochunas, M. Hursin, T. Downar, Z. Karoutas, and E. Baglietto, Coupled computational fluid dynamics and MOC neutronic simulations of Westinghouse PWR fuel assemblies with grid spacers, in 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Toronto, Ontario, 2011.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S47 - S65
ISSN (online): 1095-7197

History

Submitted: 11 July 2016
Accepted: 26 October 2016
Published online: 26 October 2017

Keywords

  1. nonlinear equations
  2. Anderson acceleration
  3. local improvement

MSC codes

  1. 65H10
  2. 82D75

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1406349, SI2-SSE-1339844
U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-AC05-00OR22725

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media