Open access

Primal-Dual Extragradient Methods for Nonlinear Nonsmooth PDE-Constrained Optimization

Abstract

We study the extension of the Chambolle--Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant, provided one part of the functional is strongly convex. We show the applicability of the accelerated algorithm to examples of inverse problems with $L^1$ and $L^\infty$ fitting terms as well as of state-constrained optimal control problems, where convergence can be guaranteed after introducing an (arbitrarily small, still nonsmooth) Moreau--Yosida regularization. This is verified in numerical examples.

Keywords

  1. primal-dual
  2. PDE-constrained
  3. nonsmooth
  4. nonlinear
  5. extragradient

MSC codes

  1. 49M29
  2. 49J53
  3. 49N45

Formats available

You can view the full content in the following formats:

References

1.
V. Azhmyakov and S. Noriega Morales, Proximal point method for optimal control processes governed by ordinary differential equations, Asian J. Control, 12 (2010), pp. 15--25, https://doi.org/10.1002/asjc.154.
2.
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011, https://doi.org/10.1007/978-1-4419-9467-7.
3.
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120--145, https://doi.org/10.1007/s10851-010-0251-1.
4.
A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal--dual algorithm, Math. Program., 159 (2016), pp. 253--287, https://doi.org/10.1007/s10107-015-0957-3.
5.
F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia, 1990, https://doi.org/10.1137/1.9781611971309.
6.
C. Clason, L$^\infty$ fitting for inverse problems with uniform noise, Inverse Problems, 28 (2012), 104007, https://doi.org/10.1088/0266-5611/28/10/104007.
7.
C. Clason and B. Jin, A semismooth Newton method for nonlinear parameter identification problems with impulsive noise, SIAM J. Imaging Sci., 5 (2012), pp. 505--536, https://doi.org/10.1137/110826187.
8.
C. Clason, B. Kaltenbacher, and D. Wachsmuth, Functional error estimators for the adaptive discretization of inverse problems, Inverse Problems, 32 (2016), 104004, https://doi.org/10.1088/0266-5611/32/10/104004.
9.
C. Clason and T. Valkonen, Stability of saddle points via explicit coderivatives of pointwise subdifferentials, Set-Valued Var. Anal., 25 (2017), pp. 69--112. https://doi.org/10.1007/s11228-016-0366-7.
10.
J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer, Berlin, 2001, https://doi.org/10.1007/978-3-642-56468-0.
11.
K. Ito and K. Kunisch, Semi-smooth Newton methods for state-constrained optimal control problems, Systems Control Lett., 50 (2003), pp. 221--228, https://doi.org/10.1016/S0167-6911(03)00156-7.
12.
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898718614.
13.
D. Kalise, A. Kröner, and K. Kunisch, Local minimization algorithms for dynamic programming equations, SIAM J. Sci. Comput., 38 (2016), pp. A1587--A1615, https://doi.org/10.1137/15M1010269.
14.
B. Kaltenbacher, A. Kirchner, and B. Vexler, Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems, Inverse Problems, 27 (2011), 125008, https://doi.org/10.1088/0266-5611/27/12/125008.
15.
E. V. Khoroshilova, Extragradient-type method for optimal control problem with linear constraints and convex objective function, Optim. Lett., 7 (2013), pp. 1193--1214, https://doi.org/10.1007/s11590-012-0496-2.
16.
A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 230 (2009), pp. 781--802, https://doi.org/10.1016/j.cam.2009.01.023.
17.
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/978-3-642-02431-3.
18.
A. Schindele and A. Borzì, Proximal methods for elliptic optimal control problems with sparsity cost functional, Appl. Math., 7 (2016), pp. 967--992, https://doi.org/10.4236/am.2016.79086.
19.
M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611970692.
20.
T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with applications to MRI, Inverse Problems, 30 (2014), 055012, https://doi.org/10.1088/0266-5611/30/5/055012.
21.
T. Valkonen and T. Pock, Acceleration of the PDHGM on strongly convex subspaces, J. Math. Imaging Vision, Online First (2016), https://doi.org/10.1007/s10851-016-0692-2.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 1314 - 1339
ISSN (online): 1095-7189

History

Submitted: 21 June 2016
Accepted: 14 March 2017
Published online: 6 July 2017

Keywords

  1. primal-dual
  2. PDE-constrained
  3. nonsmooth
  4. nonlinear
  5. extragradient

MSC codes

  1. 49M29
  2. 49J53
  3. 49N45

Authors

Affiliations

Funding Information

Secretaría de Educación Superior, Ciencia, Tecnología e Innovación

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : Cl 487/1-1

Funding Information

King Abdullah University of Science and Technology https://doi.org/10.13039/501100004052 : KUK-I1-007-43

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/J009539/1, EP/M00483X/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media