Abstract

The increasing number of applications requiring the solution of large-scale singular value problems has rekindled an interest in iterative methods for the SVD. Some promising recent advances in large-scale iterative methods are still plagued by slow convergence and accuracy limitations for computing smallest singular triplets. Furthermore, their current implementations in MATLAB cannot address the required large problems. Recently, we presented a preconditioned, two-stage method to effectively and accurately compute a small number of extreme singular triplets. In this research, we present a high-performance library, PRIMME_SVDS, that implements our hybrid method based on the state-of-the-art eigensolver package PRIMME for both largest and smallest singular values. PRIMME_SVDS fills a gap in production level software for computing the partial SVD, especially with preconditioning. The numerical experiments demonstrate its superior performance compared to other state-of-the-art software and its good parallel performance under strong and weak scaling.

Keywords

  1. SVD solver
  2. high-performance
  3. preconditioned
  4. large-scale computations
  5. accurate computation
  6. PRIMME_SVDS

MSC codes

  1. 15A18
  2. 97N80

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Avron, A. Druinsky, and S. Toledo, Spectral Condition-Number Estimation of Large Sparse Matrices, preprint, ArXiv:1301.1107, 2013.
2.
J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J. Sci. Comput., 27 (2005), pp. 19--42.
3.
J. Baglama and L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Algorithms, 43 (2006), pp. 251--272.
4.
J. Baglama and L. Reichel, An implicitly restarted block Lanczos bidiagonalization method using Leja shifts, BIT, 53 (2013), pp. 285--310.
5.
C. G. Baker and M. A. Heroux, Tpetra, and the use of generic programming in scientific computing, Sci. Program., 20 (2012), pp. 115--128.
6.
S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes, K. Rupp, B. Smith, and H. Zhang, PETSc Users Manual Revision 3.5, Technical report, ANL-95/11 Rev 3.5, Argonne National Laboratory, Argonne, IL, 2014.
7.
M. W. Berry, Large-scale sparse singular value computations, Int. J. Supercomput. Appl., 6 (1992), pp. 13--49.
8.
J. Chen, L. Wu, K. Audhkhasi, B. Kingsbury, and B. Ramabhadran, Efficient one-vs-one kernel ridge regression for speech recognition, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Piscataway, NJ, 2016, pp. 2454--2458.
9.
J. Cullum, R. A. Willoughby, and M. Lake, A Lanczos algorithm for computing singular values and vectors of large matrices, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 197--215.
10.
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing by latent semantic analysis, J. Amer. Soc. Inf. Sci., 41 (1990), pp. 391--407.
11.
J. J. Dongarra, Improving the accuracy of computed singular values, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 712--719.
12.
G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. SIAM Ser. B Numer. Anal., 2 (1965), pp. 205--224.
13.
G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal., 17 (1980), pp. 883--893.
14.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
15.
G. H. Golub and Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comput., 24 (2002), pp. 312--334.
16.
N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217--288.
17.
V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155--177.
18.
V. Hernandez and J. E. Roman, A robust and efficient parallel SVD solver based on restarted Lanczos bidiagonalization, Electron. Trans. Numer. Anal., 31 (2008), pp. 68--85.
19.
V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351--362.
20.
M. E. Hochstenbach, A Jacobi--Davidson type SVD method, SIAM J. Sci. Comput., 23 (2001), pp. 606--628.
21.
M. E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem, with applications in least squares problems, BIT, 44 (2004), pp. 721--754.
22.
Z. Jia, Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997), pp. 1--23.
23.
Z. Jia and D. Niu, An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 246--265.
24.
Z. Jia and D. Niu, A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices, SIAM J. Sci. Comput., 32 (2010), pp. 714--744.
25.
I. Jolliffe, Principal Component Analysis, Springer, New York, 2002.
26.
E. Kokiopoulou, C. Bekas, and E. Gallopoulos, Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39--61.
27.
R. M. Larsen, Lanczos Bidiagonalization with Partial Reorthogonalization, DAIMI Report Series 537, Aarhus University, Aarhus, Denmark, 1998.
28.
R. M. Larsen, Combining Implicit Restarts and Partial Reorthogonalization in Lanczos Bidiagonalization, presentation, SCCM, Stanford University, Palo Alto, CA, 2001.
29.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools, SIAM, Philadelphia, 1998.
30.
Q. Liang and Q. Ye, Computing singular values of large matrices with an inverse-free preconditioned Krylov subspace method, Electron. Trans. Numer. Anal., 42 (2014), pp. 197--221.
31.
F. Lin and W. W. Cohen, Power iteration clustering, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, Haifa, Israel, Omnipress, Madison, 2010, pp. 655--662.
32.
M. Martone, Efficient multithreaded untransposed, transposed or symmetric sparse matrix--vector multiplication with the recursive sparse blocks format, Parallel Comput., 40 (2014), pp. 251--270.
33.
R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154 (1991), pp. 289--309.
34.
R. B. Morgan and M. Zeng, Harmonic projection methods for large non-symmetric eigenvalue problems, Numer. Linear Algebra Appl., 5 (1998), pp. 33--55.
35.
B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
36.
B. Philippe and M. Sadkane, Computation of the fundamental singular subspace of a large matrix, Linear Algebra Appl., 257 (1997), pp. 77--104.
37.
B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471--501.
38.
A. Stathopoulos, A case for a biorthogonal Jacobi--Davidson method: Restarting and correction equation, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 238--259.
39.
A. Stathopoulos, Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue, SIAM J. Sci. Comput., 29 (2007), pp. 481--514.
40.
A. Stathopoulos and J. R. McCombs, PRIMME: Preconditioned iterative multimethod eigensolver: Methods and software description, ACM Trans. Math. Software, 37 (2010), 21.
41.
G. W. Stewart, Matrix Algorithms Volume 2: Eigensystems, Other Titles Appl. Math., SIAM, Philadelphia, 2001.
42.
L. N. Trefethen, Computation of pseudospectra, Acta Numer., 8 (1999), pp. 247--295.
43.
C. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, in Proceedings of the 14th Annual Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 682--688.
44.
L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos, Estimating the trace of the matrix inverse by interpolating from the diagonal of an approximate inverse, J. Comput. Phys., 326 (2016), pp. 828--844.
45.
L. Wu and A. Stathopoulos, A preconditioned hybrid SVD method for accurately computing singular triplets of large matrices, SIAM J. Sci. Comput., 37 (2015), pp. S365--S388.
46.
L. Wu, I. E. H. Yen, J. Chen, and R. Yan, Revisiting random binning feature: Fast convergence and strong parallelizability, in 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), ACM, New York, 2016, pp. 1265--1274.
47.
Z. Xianyi, W. Qian, and Z. Yunquan, Model-driven level 3 BLAS performance optimization on loongson 3a processor, in 2012 IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS), IEEE, Piscataway, NJ, 2012, pp. 684--691.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S248 - S271
ISSN (online): 1095-7197

History

Submitted: 30 June 2016
Accepted: 23 January 2017
Published online: 26 October 2017

Keywords

  1. SVD solver
  2. high-performance
  3. preconditioned
  4. large-scale computations
  5. accurate computation
  6. PRIMME_SVDS

MSC codes

  1. 15A18
  2. 97N80

Authors

Affiliations

Funding Information

Office of Science https://doi.org/10.13039/100006132 : DE-AC02-05CH11231
National Science Foundation https://doi.org/10.13039/100000001 : CCF 1218349, ACI S12-SSE 1440700
U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-FC02-12ER41890

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media