Abstract

The need for parallelism in the time dimension is being driven by changes in computer architectures, where performance increases are now provided through greater concurrency, not faster clock speeds. This creates a bottleneck for sequential time marching schemes because they lack parallelism in the time dimension. Multigrid reduction in time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficiency is defined as achieving similar performance when compared to an equivalent linear problem. The benchmark nonlinear problem is the $p$-Laplacian, where p=4 corresponds to a well-known nonlinear diffusion equation and $p=2$ corresponds to the standard linear diffusion operator, our benchmark linear problem. The key difficulty encountered is that the nonlinear time-step solver becomes progressively more expensive on coarser time levels as the time-step size increases. To overcome such difficulties, multigrid research has historically targeted an accumulated body of experience regarding how to choose an appropriate solver for a specific problem type. To that end, this paper develops a library of MGRIT optimizations and modifications, most important an alternate initial guess for the nonlinear time-step solver and delayed spatial coarsening, that will allow many nonlinear parabolic problems to be solved with parallel scaling behavior comparable to the corresponding linear problem.

Keywords

  1. multigrid
  2. multigrid-in-time
  3. parabolic problems
  4. nonlinear
  5. reduction-based multigrid
  6. parareal
  7. high performance computing

MSC codes

  1. 65F10
  2. 65M22
  3. 65M55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. Bastian, J. Burmeister, and G. Horton, Implementation of a parallel multigrid method for parabolic partial differential equations, in Parallel Algorithms for PDEs, Proc. 6th GAMM Seminar Kiel, January 19-21, 1990, W. Hackbusch, ed., Vieweg Verlag, Braunschweig, 1990, pp. 18--27.
2.
B. Bjorn and J. Rowlett, Mathematical models for erosion and the optimal transportation of sediment, Int. J. Nonlinear Sci. Numer. Simul., 14 (2013), pp. 323--337.
3.
A. Brandt, Multi--level adaptive solutions to boundary--value problems, Math. Comp., 31 (1977), pp. 333--390.
4.
A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press, Cambridge, UK, 1984, pp. 257--284.
5.
P. Chartier and B. Philippe, A parallel shooting technique for solving dissipative ODEs, Computing, 51 (1993), pp. 209--236.
6.
A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci. Comput., 32 (2010), pp. 818--835, https://doi.org/10.1137/09075740X.
7.
H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs, SIAM J. Sci. Comput., 26 (2004), pp. 31--54, https://doi.org/10.1137/S106482750240858X.
8.
A. Elmoataz, M. Toutain, and D. Tenbrinck, On the $p$-Laplacian and $\infty$-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci., 8 (2015), pp. 2412--2451, https://doi.org/10.1137/15M1022793.
9.
M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105--132.
10.
R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661, https://doi.org/10.1137/130944230.
11.
R. D. Falgout, A. Katz, T. Kolev, J. B. Schroder, A. Wissink, and U. M. Yang, Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application, Lawrence Livermore National Laboratory Technical Report LLNL-JRNL-663416, 2015.
12.
M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds., Springer, Cham, 2015, pp. 69--113.
13.
M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A2173--A2208, https://doi.org/10.1137/15M1046605.
14.
M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., 29 (2007), pp. 556--578, https://doi.org/10.1137/05064607X.
15.
S. Güttel, A parallel overlapping time-domain decomposition method for ODEs, in Domain Decomposition Methods in Science and Engineering XX, Lect. Notes Comput. Sci. Eng. 91, R. Bank, M. Holst, O. Widlund, J. Xu, eds., Springer, Heidelberg, 2013, pp. 459--466.
16.
W. Hackbusch, Parabolic multigrid methods, in Computing Methods in Applied Sciences and Engineering VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189--197.
17.
G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992), pp. 585--595.
18.
G. Horton and R. Knirsch, A time-parallel multigrid-extrapolation method for parabolic partial differential equations, Parallel Comput., 18 (1992), pp. 21--29.
19.
G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848--864, https://doi.org/10.1137/0916050.
20.
G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 531--541, https://doi.org/10.1137/0916034.
21.
HYPRE: High Performance Preconditioners, http://www.llnl.gov/CASC/hypre/.
22.
H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell, Waltham, MA, Toronto, London, 1968.
23.
P. Lindqvist, Notes on the $p$-Laplace Equation, Tech. report, Department of Mathematics, Ohio State University, 2006.
24.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel'', C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661--668.
25.
C. Lubich and A. Ostermann, Multigrid dynamic iteration for parabolic equations, BIT, 27 (1987), pp. 216--234.
26.
Y. Maday, O. Mula, and M.-K. Riahi, Toward a Fully Scalable Balanced Parareal Method: Application to Neutronics, working paper or preprint, August 2015, https://hal.archives-ouvertes.fr/hal-01184303.
27.
Y. Maday and E. Rønquist, Parallelization in time through tensor-product space-time solvers, C. R. Math. Acad. Sci. Paris, 346 (2008), pp. 113--118.
28.
S. F. McCormick and J. W. Ruge, Multigrid methods for variational problems, SIAM J. Numer. Anal., 19 (1982), pp. 924--929, https://doi.org/10.1137/0719067.
29.
MFEM: Modular Finite Element Methods, www.mfem.org.
30.
M. L. Minion, R. Speck, M. Bolten, M. Emmett, and D. Ruprecht, Interweaving PFASST and parallel multigrid, SIAM J. Sci. Comput., 37 (2015), pp. S244--S263, https://doi.org/10.1137/14097536X.
31.
M. L. Minion and S. A. Williams, Parareal and spectral deferred corrections, in Numerical Analysis and Applied Mathematics, T. E. Simos, ed., AIP Conf. Proc. 1048, AIP, Melville, NY, 2008, pp. 388--391.
32.
W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential equations, Math. Comp., 21 (1967), pp. 303--320.
33.
J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM, 7 (1964), pp. 731--733.
34.
J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. F. McCormick, ed., Frontiers Appl. Math. 3, SIAM, Philadelphia, 1987, pp. 73--130, https://doi.org/10.1137/1.9781611971057.ch4.
35.
J. B. Schroder, R. D. Falgout, and B. O'Neill, Multigrid reduction in time (MGRIT): A flexible and non-intrusive method, 4th Workshop on Parallel-in-Time Integration, Dresden, Germany, archived at Lawrence Livermore as LLNL-PRES-671059, 2015, http://people.llnl.gov/schroder2.
36.
D. Sheen, I. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23 (2003), pp. 269--299.
37.
S. Vandewalle and G. Horton, Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods, Computing, 54 (1995), pp. 317--330.
38.
S. Vandewalle and R. Piessens, Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1330--1346, https://doi.org/10.1137/0913075.
39.
S. G. Vandewalle and E. F. V. de Velde, Space-time concurrent multigrid waveform relaxation, Ann. Numer. Math., 1 (1994), pp. 347--360.
40.
T. Weinzierl and T. Köppl, A geometric space-time multigrid algorithm for the heat equation, Numer. Math. Theory Methods Appl., 5 (2012), pp. 110--130.
41.
XBraid: Parallel Multigrid in Time, http://llnl.gov/casc/xbraid.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S298 - S322
ISSN (online): 1095-7197

History

Submitted: 1 July 2016
Accepted: 1 February 2017
Published online: 26 October 2017

Keywords

  1. multigrid
  2. multigrid-in-time
  3. parabolic problems
  4. nonlinear
  5. reduction-based multigrid
  6. parareal
  7. high performance computing

MSC codes

  1. 65F10
  2. 65M22
  3. 65M55

Authors

Affiliations

Funding Information

Lawrence Livermore National Laboratory https://doi.org/10.13039/100006227 : B600360, DE-AC52-07NA27344, LLNL-JRNL-692258
U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-FC02-03ER25574, DE-NA0002376

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media