Independent meshing of subdomains in interface problems can lead to spatially noncoincident interface grids. This setting occurs both when the interface is physical, as in transmission problems, and when it results from breaking up a complex domain into simpler shapes to aid grid generation, as in mesh tying. Traditional domain decomposition enforces continuity of the states across the interface by using a Lagrange multiplier representing the interface “flux.” However, extension of this approach to noncoincident interfaces is nontrivial because of the lack of a clearly defined spatial location for the imposition of the continuity constraint. We present an alternative, optimization-based approach, which mitigates this difficulty by reversing the roles of the coupling condition and the subdomain equations. The idea is to couch the interface problem into a virtual control formulation in which the former defines the objective, the latter define the constraints, and the unknown interface flux is a virtual control, specifying Neumann boundary conditions for the subproblems. This approach has valuable computational and theoretical advantages. First, since the exact enforcement of the coupling condition on noncoincident meshes is impossible, treating it as an optimization objective rather than a constraint is better suited for this setting. For instance, the only requirement for the evaluation of the objective is linear consistency, which can be achieved by simple extension operators. Second, conservation of the flux is ensured by choosing the virtual Neumann control on each discrete interface as a pullback of a piecewise constant function defined on a common refinement of the parameterizations of these interfaces. Implementation of these pullbacks is also straightforward. Numerical studies with multiple noncoincident interface configurations confirm the accuracy and the robustness of the approach.


  1. PDE constrained optimization
  2. mesh tying
  3. transmission
  4. noncoincident interfaces
  5. optimal control
  6. virtual Neumann control

MSC codes

  1. 65D99
  2. 49J20
  3. 90C20
  4. 35J15

Get full access to this article

View all available purchase options and get full access to this article.


T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295--1315, http://doi.org/10.1137/S0036142996308447.
C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: The mortar element method, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XI, Pitman Res. Notes Math. 299, Longman Scientific and Technical, Harlow, UK, 1994, pp. 13--51.
P. Bochev and D. Day, A least-squares method for consistent mesh tying, Int. J. Numer. Anal. Model., 4 (2007), pp. 342--352.
P. Bochev and R. B. Lehoucq, On the finite element solution of the pure Neumann problem, SIAM Rev., 47 (2005), pp. 50--66, http://doi.org/10.1137/S0036144503426074.
P. Bochev and D. Ridzal, Optimization-based additive decomposition of weakly coercive problems with applications, Comput. Math. Appl., 71 (2016), pp. 2140--2154, http://doi.org/10.1016/j.camwa.2015.12.032.
M. L. Brewer and D. Marcum, eds., Proceedings of the 16th International Meshing Round-table, Springer, New York, 2008, http://www.springer.com/us/book/9783540751021.
F. Brezzi, On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, ESAIM Math. Model. Nuner. Anal., 21 (1974), pp. 129--151.
D. Day and P. Bochev, Analysis and computation of a least-squares method for consistent mesh tying, J. Comput. Appl. Math., 218 (2008), pp. 21--33, http://doi.org/10.1016/j.cam.2007.04.049.
A. de Boer, A. van Zuijlen, and H. Bijl, Review of coupling methods for non-matching meshes, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1515--1525, http://doi.org/10.1016/j.cma.2006.03.017.
M. D'Elia, M. Perego, P. Bochev, and D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71 (2016), pp. 2218--2230, http://doi.org/10.1016/j.camwa.2015.12.006.
M. Discacciati, P. Gervasio, and A. Quarteroni, The interface control domain decomposition (ICDD) method for elliptic problems, SIAM J. Control Optim., 51 (2013), pp. 3434--3458, http://doi.org/10.1137/120890764.
M. Discacciati, P. Gervasio, and A. Quarteroni, Interface control domain decomposition methods for heterogeneous problems, Internat. J. Numer. Methods Fluids, 76 (2014), pp. 471--496, http://doi.org/10.1002/fld.3942.
C. R. Dohrmann, S. W. Key, and M. W. Heinstein, A method for connecting dissimilar finite element meshes in two dimensions, Internat. J. Numer. Methods Engrg., 48 (2000), pp. 655--678, http://doi.org/10.1002/(SICI)1097-0207(20000620)48:5<655::AID-NME893>3.0.CO;2-D.
C. R. Dohrmann, S. W. Key, and M. W. Heinstein, Methods for connecting dissimilar three-dimensional finite element meshes, Internat. J. Numer. Methods Engrg., 47 (2000), pp. 1057--1080, http://doi.org/10.1002/(SICI)1097-0207(20000220)47:5<1057::AID-NME821>3.0.CO;2-G.
C. Farhat, M. Lesoinne, and P. L. Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg., 157 (1998), pp. 95--114, http://doi.org/10.1016/S0045-7825(97)00216-8.
C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32 (1991), pp. 1205--1227, http://doi.org/10.1002/nme.1620320604.
B. Flemisch, J. Melenk, and B. Wohlmuth, Mortar methods with curved interfaces, Appl. Numer. Math., 54 (2005), pp. 339--361, http://doi.org/10.1016/j.apnum.2004.09.007.
B. Flemisch, M. A. Puso, and B. I. Wohlmuth, A new dual mortar method for curved interfaces: 2D elasticity, Internat. J. Numer. Methods Engrg., 63 (2005), pp. 813--832, http://doi.org/10.1002/nme.1300.
M. D. Gunzburger, M. Heinkenschloss, and H. K. Lee, Solution of elliptic partial differential equations by an optimization-based domain decomposition method, Appl. Math. Comput., 113 (2000), pp. 111--139, http://doi.org/10.1016/S0096-3003(99)00076-4.
M. D. Gunzburger and H. K. Lee, An optimization-based domain decomposition method for the Navier--Stokes equations, SIAM J. Numer. Anal., 37 (2000), pp. 1455--1480.
M. D. Gunzburger, J. S. Peterson, and H. Kwon, An optimization based domain decomposition method for partial differential equations, Comput. Math. Appl., 37 (1999), pp. 77--93, http://doi.org/10.1016/S0898-1221(99)00127-3.
F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251--265.
X. Jiao and M. T. Heath, Common-refinement-based data transfer between non-matching meshes in multiphysics simulations, Internat. J. Numer. Methods Engrg., 61 (2004), pp. 2402--2427, http://doi.org/10.1002/nme.1147.
T. A. Laursen and M. W. Heinstein, Consistent mesh tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Engrg., 57 (2003), pp. 1197--1242, http://doi.org/10.1002/nme.721.
D. Olson, P. Bochev, M. Luskin, and A. Shapeev, An optimization-based atomistic-to-continuum coupling method, SIAM J. Numer. Anal., 52 (2014), pp. 2183--2204, http://doi.org/10.1137/13091734X.
M. Parks, L. Romero, and P. Bochev, A novel Lagrange-multiplier based method for consistent mesh tying, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 3335--3347, http://doi.org/10.1016/j.cma.2007.03.013.
A. Toselli and O. Widlund, Domain Decomposition Methods---Algorithms and Theory, Springer, New York, 2005.
B. I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38 (2000), pp. 989--1012, http://doi.org/10.1137/S0036142999350929.

Information & Authors


Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S757 - S781
ISSN (online): 1095-7197


Submitted: 14 July 2016
Accepted: 31 May 2017
Published online: 26 October 2017


  1. PDE constrained optimization
  2. mesh tying
  3. transmission
  4. noncoincident interfaces
  5. optimal control
  6. virtual Neumann control

MSC codes

  1. 65D99
  2. 49J20
  3. 90C20
  4. 35J15



Funding Information

Sandia National Laboratories https://doi.org/10.13039/100006234 : DE-AC04-94AL85000
Office of Science https://doi.org/10.13039/100006132

Metrics & Citations



If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options


View PDF







Copy the content Link

Share with email

Email a colleague

Share on social media