Computational Methods in Science and Engineering

On the Use of Compressed Polyhedral Quadrature Formulas in Embedded Interface Methods

Abstract

The main idea of this paper is to apply a recent quadrature compression technique to algebraic quadrature formulas on complex polyhedra. The quadrature compression substantially reduces the number of integration points but preserves the accuracy of integration. The compression is easy to achieve since it is entirely based on the fundamental methods of numerical linear algebra. The resulting compressed formulas are applied in an embedded interface method to integrate the weak form of the Navier--Stokes equations. Simulations of flow past stationary and moving interface problems demonstrate that the compressed quadratures improve the efficiency of performing the weak form integration, while preserving accuracy and order of convergence. (An erratum is attached.)

Keywords

  1. quadrature compression
  2. algebraic quadrature
  3. complex polyhedra
  4. embedded interface methods

MSC codes

  1. 65D32, 65M60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Alam, S. N. Khan, B. G. Wilson, and D. D. Johnson, Efficient isoparametric integration over arbitrary space-filling Voronoi polyhedra for electronic structure calculations, Phys. Rev. B, 84 (2011), 045105.
2.
P. M. Boerrigter, G. Te Velde, and E. J. Baerends, Three-dimensional numerical integration for electronic structure calculations, Int. J. Quantum Chem., XXXIII (1988), pp. 87--113.
3.
L. Bos, S. D. Marchi, A. Sommariva, and M. Vianello, Computing multivariate Fekete and Leja points by numerical linear algebra, SIAM J. Numer. Anal., 48 (2010), pp. 1984--1999.
4.
P. Businger and G. Golub, Linear least-squares solutions by householder transformations, Numer. Math., 7 (1965), pp. 269--276.
5.
C. Cattani and A. Paoluzzi, Boundary integration over linear polyhedra, Comput.-Aided Des., 22 (1990), pp. 130--135.
6.
E. B. Chin, J. B. Lasserre, and N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56 (2015), pp. 967--981.
7.
A. Civril and M. Magdon-Ismail, On selecting a maximum volume submatrix of a matrix and related problems, Theoret. Comput. Sci., 410 (2009), pp. 4801--4811.
8.
G. Dasgupta, Integration within Polygonal Finite Elements, J. Aerosp. Eng., 16 (2003), pp. 9--18.
9.
A. R. Dobrovolskis, Inertia of Any Polyhedron, Icarus, 124 (1996), pp. 698--704.
10.
C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press, Cambridge, 2001.
11.
M. Gentile, A. Sommariva, and M. Vianello, Polynomial interpolation and cubature over polygons, J. Comput. Appl. Math., 235 (2011), pp. 5232--5239.
12.
A. Gerstenberger and W. A. Wall, An extended finite element method/Lagrange multiplier based approach for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 1699--1714.
13.
H. Hamdani and M. Sun, Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small reynolds number, Acta Mech., 145 (2000), pp. 173--187.
14.
D. Huybrechs, Stable high-order quadrature rules with equidistant points, J. Comput. Appl. Math., 231 (2009), pp. 933--947.
15.
M. Joulaian, S. Hubrich, and A. Düster, Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57 (2016), pp. 979--999.
16.
J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier--Stokes equations, J. Comput. Phys., 59 (1985), pp. 308--323.
17.
C. Lawson and R. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, 1995.
18.
P. Milbradt and T. Pick, Polytope finite elements, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 1811--1835.
19.
C. Min and F. Gibou, Geometric integration over irregular domains with application to level-set methods, J. Comput. Phys., 226 (2007), pp. 1432--1443.
20.
B. Mirtich, Fast and accurate computation of polyhedral mass properties, J. Graph. GPU Game Tools, 1 (1996), pp. 31--50.
21.
S. E. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47 (2011), pp. 535--554.
22.
S. E. Mousavi, H. Xiao, and N. Sukumar, Generalized Gaussian quadrature rules on arbitrary polygons, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 99--113.
23.
B. Mueller, F. Kummer, M. Oberlack, and Y. Wang, Simple multidimensional integration of discontinuous functions with application to level set methods, Internat. J. Numer. Methods Engrg., 92 (2012), pp. 637--651.
24.
S. Natarajan, S. Bordas, and D. R. Mahapatra, Numerical integration over arbitrary polygonal domains based on Schwarz--Christoffel conformal mapping, Internat. J. Numer. Methods Engrg., 80 (2009), pp. 103--134.
25.
J. P. Pereira, C. A. Duarte, D. Guoy, and X. Jiao, hp-Generalized FEM and crack surface representation for non-planar 3-D cracks, Internat. J. Numer. Methods Engrg., 77 (2009), pp. 601--633.
26.
W. Plesniak, Multivariate Jackson inequality, J. Comput. Appl. Math., 233 (2009), pp. 815--820.
27.
M. Putinar, A note on Tchakaloff's theorem, Proc. Amer. Math. Soc., 125 (1997), pp. 2409--2414.
28.
M. M. Rashid and M. Selimotic, A three-dimensional finite element method with arbitrary polyhedral elements, Internat. J. Numer. Methods Engrg., 67 (2006), pp. 226--252.
29.
U. Rasthofer, F. Henke, W. A. Wall, and V. Gravemeier, An extended residual-based variational multiscale method for two-phase flow including surface tension, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 1866--1876.
30.
B. Schott, U. Rasthofer, V. Gravemeier, and W. A. Wall, A face-oriented stabilized Nitsche-type extended variational multiscale method for incompressible two-phase flow, Internat. J. Numer. Methods Engrg., 104 (2015), pp. 721--748.
31.
B. Schott, S. Shahmiri, R. Kruse, and W. Wall, A stabilized Nitsche-type extended embedding mesh approach for 3D low- and high-Reynolds-number flows, Internat. J. Numer. Methods Fluids, 82 (2016), pp. 289--315.
32.
B. Schott and W. A. Wall, A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier--Stokes equations, Comput. Methods Appl. Mech. Engrg., 276 (2014), pp. 233--265.
33.
B. Singh and D. Guptasarma, New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra, Geophysics, 66 (2001), pp. 521--526.
34.
A. Sommariva and M. Vianello, Computing approximate Fekete points by QR factorizations of Vandermonde matrices, Comput. Math. Appl., 57 (2009), pp. 1324--1336.
35.
A. Sommariva and M. Vianello, Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim., 36 (2015), pp. 1198--1223.
36.
Y. Sudhakar, J. P. M. de Almeida, and W. A. Wall, An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods, J. Comput. Phys., 273 (2014), pp. 393--415.
37.
Y. Sudhakar and W. A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput. Methods Appl. Mech. Engrg., 258 (2013), pp. 39--54.
38.
N. Sukumar and A. Tabarraei, Confirming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61 (2004), pp. 2045--2066.
39.
Tchakaloff, Formules de cubature mécaniques à coefficients nonnégatifs, Bull. Sci. Math., 81 (1957), pp. 123--134.
40.
H. G. Trimmer and J. M. Stern, Computation of global geometric properties of solid objects, Comput.-Aided Des., 12 (1980), pp. 301--304.
41.
D. Tsoulis, Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedra source using line integrals, Geophysics, 77 (2012), pp. F1--F11.
42.
G. Ventura, On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 761--795.
43.
M. Wicke, M. Botsch, and M. Gross, A finite element method on convex polyhedra, Comput. Graph. Forum, 26 (2007), pp. 355--364.
44.
H. Xiao and Z. Gimbutas, A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions, Comput. Math. Appl., 59 (2008), pp. 663--676.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B571 - B587
ISSN (online): 1095-7197

History

Submitted: 8 July 2016
Accepted: 8 May 2017
Published online: 27 June 2017

Keywords

  1. quadrature compression
  2. algebraic quadrature
  3. complex polyhedra
  4. embedded interface methods

MSC codes

  1. 65D32, 65M60

Authors

Affiliations

Funding Information

Istituto Nazionale di Alta Matematica
Università degli Studi di Padova https://doi.org/10.13039/501100003500 : CPDA143275

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media