Abstract

We present a robust and efficient multigrid method for single-patch isogeometric discretizations using tensor product B-splines of maximum smoothness. Our method is based on a stable splitting of the spline space into a large subspace of “interior” splines which satisfy a robust inverse inequality, as well as one or several smaller subspaces which capture the boundary effects responsible for the spectral outliers which occur in isogeometric analysis. We then construct a multigrid smoother based on an additive subspace correction approach, applying a different smoother to each of the subspaces. For the interior splines, we use a mass smoother, whereas the remaining components are treated with suitably chosen Kronecker product smoothers or direct solvers. We prove that the resulting multigrid method exhibits iteration numbers which are robust with respect to the spline degree and the mesh size. Furthermore, it can be efficiently realized for discretizations of problems in arbitrarily high geometric dimension. Some numerical examples illustrate the theoretical results and show that the iteration numbers also scale relatively mildly with the problem dimension.

Keywords

  1. isogeometric analysis
  2. multigrid methods
  3. B-splines
  4. stable splittings
  5. subspace correction methods

MSC codes

  1. 65N55
  2. 65N30
  3. 65F08
  4. 65D07

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Buffa, H. Harbrecht, A. Kunoth, and G. Sangalli, BPX-preconditioning for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 265 (2013), pp. 63--70, https://doi.org/10.1016/j.cma.2013.05.014.
2.
N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V. M. Calo, The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213--216 (2012), pp. 353--361, https://doi.org/10.1016/j.cma.2011.11.002.
3.
J. Cottrell, A. Reali, Y. Bazilevs, and T. Hughes, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5257--5296, https://doi.org/10.1016/j.cma.2005.09.027.
4.
L. B. da Veiga, D. Cho, L. Pavarino, and S. Scacchi, Overlapping Schwarz methods for isogeometric analysis, SIAM J. Numer. Anal., 50 (2012), pp. 1394--1416, https://doi.org/10.1137/110833476.
5.
L. B. da Veiga, D. Cho, L. Pavarino, and S. Scacchi, BDDC preconditioners for isogeometric analysis, Math. Models Methods Appl. Sci., 23 (2013), pp. 1099--1142, https://doi.org/10.1142/S0218202513500048.
6.
L. B. da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Isogeometric BDDC preconditioners with deluxe scaling, SIAM J. Sci. Comput., 36 (2014), pp. A1118--A1139, https://doi.org/10.1137/130917399.
7.
C. de Boor, Efficient computer manipulation of tensor products, ACM Trans. Math. Software, 5 (1979), pp. 173--182, https://doi.org/10.1145/355826.355831.
8.
C. de Boor, A Practical Guide to Splines, revised ed., Appl. Math. Sci. 27, Springer, New York, 2001.
9.
M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284 (2015), pp. 230--264, https://doi.org/10.1016/j.cma.2014.06.001.
10.
M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis, SIAM J. Numer. Anal., 55 (2017), pp. 31--62, https://doi.org/10.1137/140988590.
11.
K. P. S. Gahalaut, J. K. Kraus, and S. K. Tomar, Multigrid methods for isogeometric discretization, Comput. Methods Appl. Mech. Engrg., 253 (2013), pp. 413--425, https://doi.org/10.1016/j.cma.2012.08.015.
12.
G. Golub and C. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2012.
13.
M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math., 70 (1995), pp. 163--180, https://doi.org/10.1007/s002110050115.
14.
W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
15.
C. Hofreither, S. Takacs, and W. Zulehner, A robust multigrid method for isogeometric analysis in two dimensions using boundary correction, Comput. Methods Appl. Mech. Engrg., 316 (2017), pp. 22--42, https://doi.org/10.1016/j.cma.2016.04.003, 2016, available online.
16.
C. Hofreither and W. Zulehner, Mass smoothers in geometric multigrid for isogeometric analysis, in Curves and Surfaces, J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, and L. L. Schumaker, eds., Lecture Notes in Comput. Sci. 9213, Springer, Cham, 2015, pp. 272--279, https://doi.org/10.1007/978-3-319-22804-4_20.
17.
C. Hofreither and W. Zulehner, Spectral analysis of geometric multigrid methods for isogeometric analysis, in Numerical Methods and Applications, I. Dimov, S. Fidanova, and I. Lirkov, eds., Lecture Notes in Comput. Sci. 8962, Springer, Cham, 2015, pp. 123--129, https://doi.org/10.1007/978-3-319-15585-2_14.
18.
T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4135--4195, https://doi.org/10.1016/j.cma.2004.10.008.
19.
S. K. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar, IETI -- Isogeometric tearing and interconnecting, Comput. Methods Appl. Mech. Engrg., 247--248 (2012), pp. 201--215, https://doi.org/10.1016/j.cma.2012.08.007.
20.
G. Sangalli and M. Tani, Isogeometric preconditioners based on fast solvers for the Sylvester equation, SIAM J. Sci. Comput., 38 (2016), pp. A3644--A3671, https://doi.org/10.1137/16M1062788.
21.
S. Takacs and T. Takacs, Approximation error estimates and inverse inequalities for B-splines of maximum smoothness, Math. Models Methods Appl. Sci., 26 (2016), pp. 1411--1445, https://doi.org/10.1142/S0218202516500342.
22.
U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
23.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581--613, https://doi.org/10.1137/1034116.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2004 - 2024
ISSN (online): 1095-7170

History

Submitted: 18 July 2016
Accepted: 26 June 2017
Published online: 17 August 2017

Keywords

  1. isogeometric analysis
  2. multigrid methods
  3. B-splines
  4. stable splittings
  5. subspace correction methods

MSC codes

  1. 65N55
  2. 65N30
  3. 65F08
  4. 65D07

Authors

Affiliations

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : NFN S117

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.