Open access

Varying the Resolution of the Rouse Model on Temporal and Spatial Scales: Application to Multiscale Modeling of DNA Dynamics

Abstract

A multiresolution bead-spring model for polymer dynamics is developed as a generalization of the Rouse model. A polymer chain is described using beads of variable sizes connected by springs with variable spring constants. A numerical scheme which can use different timesteps to advance the positions of different beads is presented and analyzed. The position of a particular bead is updated only at integer multiples of the timesteps associated with its connecting springs. This approach extends the Rouse model to a multiresolution model on both spatial and temporal scales, allowing simulations of localized regions of a polymer chain with high spatial and temporal resolution, while using a coarser modeling approach to describe the rest of the polymer chain. A method for changing the model resolution on the fly is developed using the Metropolis--Hastings algorithm. It is shown that this approach maintains key statistics of the end-to-end distance and diffusion of the polymer filament and makes computational savings when applied to a model for the binding of a protein to the DNA filament.

Keywords

  1. polymer dynamics
  2. DNA
  3. Rouse model
  4. Brownian dynamics
  5. multiscale modeling

MSC codes

  1. 60H10
  2. 60J70
  3. 82C31
  4. 82D60
  5. 92B99

Formats available

You can view the full content in the following formats:

References

1.
S. A. Allison, Brownian dynamics simulation of wormlike chains. Fluorescence depolarization and depolarized light scattering, Macromolecules, 19 (1986), pp. 118--124.
2.
S. S. Andrews, Methods for modeling cytoskeletal and DNA filaments, Phys. Biol., 11 (2014), 011001.
3.
M. Barbieri, M. Chotalia, and J. Fraser, et al., Complexity of chromatin folding is captured by the strings and binders switch model, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 16173--16178.
4.
C. A. Brackley, M. E. Cates, and D. Marenduzzo, Intracellular facilitated diffusion: Searchers, crowders, and blockers, Phys. Rev. Lett., 111 (2013), 108101.
5.
C. A. Brackley, J. Johnson, S. Kelly, et al., Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains, Nucleic Acids Res., 44 (2016), pp. 3503--3512.
6.
K. Bystricky, P. Heun, L. Gehlen, et al., Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques, Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 16495--16500.
7.
S. Chib and E. Greenberg, Understanding the Metropolis--Hastings algorithm, Amer. Statist., 49 (1995), pp. 327--335.
8.
T. Cremer, M. Cremer, B. Hübner, et al., The $4$D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments, FEBS Lett., 589 (2015), pp. 2931--2943.
9.
P. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.
10.
J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing chromosome conformation, Science, 295 (2002), pp. 1306--1311.
11.
J. Dekker, M. A. Marti-Renom, and L. A. Mirny, Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data, Nat. Rev. Genet., 14 (2013), pp. 390--403.
12.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1988.
13.
Z. Duan, M. Andronescu, K. Schutz, et al., A three-dimensional model of the yeast genome, Nature, 465 (2010), pp. 363--367.
14.
R. Erban, From molecular dynamics to Brownian dynamics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140036.
15.
R. Erban, Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472 (2016), 20150556.
16.
R. Erban and S. J. Chapman, Stochastic modeling of reaction--diffusion processes: Algorithms for bimolecular reactions, Phys. Biol., 6 (2009), 046001.
17.
D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys., 69 (1978), pp. 1352--1360.
18.
G. Felsenfeld and M. Groudine, Controlling the double helix, Nature, 421 (2003), pp. 448--453.
19.
M. B. Flegg, S. J. Chapman, and R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations, J. R. Soc. Interface, 9 (2012), pp. 859--868.
20.
L. R. Gehlen, G. Gruenert, M. B. Jones, et al., Chromosome positioning and the clustering of functionally related loci in yeast is driven by chromosomal interactions, Nucleus, 3 (2012), pp. 370--383.
21.
A. Grosberg, Y. Rabin, S. Havlin, and A. Neer, Crumpled globule model of the three-dimensional structure of DNA, Europhys. Lett., 23 (1993), pp. 373--378.
22.
A. Grosberg, How two meters of DNA fit into a cell nucleus: Polymer models with topological constraints and experimental data, Polym. Sci. Ser. C, 54 (2012), pp. 1--10.
23.
M. G. Guenza, Theoretical models for bridging timescales in polymer dynamics, J. Phys. Condens. Matter, 20 (2008), 033101.
24.
E. Guth and H. Mark, Zur innermolekularen Statistik, insbesondere bei Kettenmolekülen I, Monatsh. Chem., 65 (1934), pp. 93--121.
25.
P. J. Hagerman and B. H. Zimm, Monte Carlo approach to the analysis of the rotational diffusion of wormlike chains, Biopolymers, 20 (1981), pp. 1481--1502.
26.
P. J. Hagerman, Flexibility of DNA, Annu. Rev. Biophys. Biophys. Chem., 17 (1988), pp. 265--286.
27.
S. E. Halford and J. F. Marko, How do site-specific DNA-binding proteins find their targets?, Nucleic Acids Res., 32 (2004), pp. 3040--3052.
28.
A. Hotz, and R. E. Skelton, Covariance control theory, Internat. J. Control, 46 (1987), pp. 13--32.
29.
J. S. Hur, E. S. Shaqfeh, and R. G. Larson, Brownian dynamics simulations of single DNA molecules in shear flow, J. Rheology, 44 (2000), pp. 713--742.
30.
J. S. Hur, E. S. Shaqfeh, H. P. Babcock, et al., Dynamics of dilute and semidilute DNA solutions in the start-up of shear flow, J. Rheology, 45 (2001), pp. 421--450.
31.
S. Jun and B. Mulder, Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 12388--12393.
32.
P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
33.
R. D. Kornberg, Chromatin structure: A repeating unit of histones and DNA, Science, 184 (1974), pp. 868--871.
34.
N. Korolev, L. Nordenskiöld, and A. P. Lyubartsev, Multiscale coarse-grained modeling of chromatin components: DNA and the nucleosome, Adv. Colloid Interface Sci., 232 (2016), pp. 36--48.
35.
O. Kratky and G. Porod, Röntgenuntersuchung gelöster Fadenmoleküle, Recl. Trav. Chim. Pay. B., 68 (1949), pp. 1106--1122.
36.
K. Kremer and G. S. Grest, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys., 92 (1990), pp. 5057--5086.
37.
W. Kuhn, Über die Gestalt fadenförmiger Moleküle in Lösungen, Colloid. Polym. Sci., 68 (1934), pp. 2--15.
38.
E. Lieberman-Aiden, N. L. van Berkum, L. Williams, et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326 (2009), pp. 289--293.
39.
K. Maeshima, K. Kaizu, S. Tamura, et al., The physical size of transcription factors is key to transcriptional regulation in chromatin domains, J. Phys. Condens. Matter, 27 (2015), 064116.
40.
K. Maeshima, R. Rogge, S. Tamura, et al., Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers, EMBO J., 35 (2016), pp. 1115--1132.
41.
L. A. Mirny, The fractal globule as a model of chromatin architecture in the cell, Chromosome Res. 19 (2011), pp. 37--51.
42.
O. Müller, N. Kepper, R. Schöpflin, R. Ettig, K. Rippe, and G. Wedemann, Changing chromatin fiber conformation by nucleosome repositioning, Biophys. J., 107 (2014), pp. 2141--2150.
43.
R. M. Neal, Slice sampling, Ann. Statist., 31 (2003), pp. 705--767.
44.
H. Ochiai, T. Sugawara, and T. Yamamoto, Simultaneous live imaging of the transcription and nuclear position of specific genes, Nucleic Acids Res., 43 (2015), e127.
45.
T. Opplestrup, V. Bulatov, A. Donev, et al., First-passage kinetic Monte Carlo method, Phys. Rev. E, 80 (2009), 066701.
46.
R. Potestio, C. Peter, and K. Kremer, Computer simulations of soft matter: Linking the scales, Entropy, 16 (2014), pp. 4199--4245.
47.
D. Richter, A. Baumgärtner, K. Binder, et al., Dynamics of collective fluctuations and Brownian motion in polymer melts, Phys. Rev. Lett., 47 (1981), pp. 109--113.
48.
A. Rosa and R. Everaers, Structure and dynamics of interphase chromosomes, PLoS Comput. Biol., 4 (2008), e1000153.
49.
R. Robertson, S. Laib, and D. Smith, Diffusion of isolated DNA molecules: Dependence on length and topology, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 7310--7314.
50.
J. Rotne and S. Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys., 50 (1969), pp. 4831--4837.
51.
P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys., 21 (1953), pp. 1272--1280.
52.
R. K. Sachs, G. van den Engh, B. Trask, et al., A random-walk/giant-loop model for interphase chromosomes, Proc. Natl. Acad. Sci. USA, 92 (1995), pp. 2710--2714.
53.
A. L. Sanborn, S. S. P. Rao, S. Huang, et al., Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. E6456--E6465.
54.
Y. Saito and M. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33 (1996), pp. 2254--2267.
55.
S. Shinkai, T. Nozaki, K. Maeshima, and Y. Togashi, Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells, PLoS Comput. Biol., 12 (2016), e1005136.
56.
M. Somasi, B. Khomami, N. J. Woo, et al., Brownian dynamics simulations of bead-rod and bead-spring chains: Numerical algorithms and coarse-graining issues, J. Non-Newton. Fluid, 108 (2002), pp. 227--255.
57.
S. Takada, R. Kanada, C. Tan, et al., Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations, Acc. Chem. Res., 48 (2015), pp. 3026--3035.
58.
K. Takahashi, S. Tanase-Nicola and P. ten Wolde, Spatio-temporal correlations can drastically change the response of a MAPK pathway, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 19820--19825.
59.
N. Tokuda, T. P. Terada, and M. Sasai, Dynamical modeling of three-dimensional genome organization in interphase budding yeast, Biophys. J., 102 (2012), pp. 296--304.
60.
E. B. Wilson, Probable inference, the law of succession, and statistical inference, J. Amer. Statist. Assoc., 22 (1927), pp. 209--212.
61.
A. Wolffe, Chromatin, 3rd ed., Academic Press, New York, 2000.
62.
H. Wong, H. Marie-Nelly, S. Herbert, et al., A predictive computational model of the dynamic $3$D interphase yeast nucleus, Curr. Biol., 22 (2012), pp. 1881--1890.
63.
J. Zavadlav, R. Podgornik, and M. Praprotnik, Adaptive resolution simulation of a DNA molecule in salt solution, J. Chem. Theory Comput., 11 (2015), pp. 5035--5044.
64.
B. H. Zimm, Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys., 24 (1956), pp. 269--278.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1672 - 1693
ISSN (online): 1540-3467

History

Submitted: 28 July 2016
Accepted: 22 May 2017
Published online: 16 November 2017

Keywords

  1. polymer dynamics
  2. DNA
  3. Rouse model
  4. Brownian dynamics
  5. multiscale modeling

MSC codes

  1. 60H10
  2. 60J70
  3. 82C31
  4. 82D60
  5. 92B99

Authors

Affiliations

Funding Information

KAKENHI : 23115007, 16H01408
Japan Agency for Medical Research and Development https://doi.org/10.13039/100009619
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/K032208/1, EP/G03706X/1
Royal Society https://doi.org/10.13039/501100000288

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media