Abstract

The rotor-router model is a deterministic process analogous to a simple random walk on a graph, and the discrepancy of token configurations between the rotor-router model and its corresponding random walk has been investigated in some contexts. Motivated by general Markov chains beyond simple random walks, this paper investigates a generalized model which imitates a Markov chain (of multiple tokens) possibly containing irrational transition probabilities. We are concerned with the vertexwise discrepancy of the numbers of tokens between the generalized model and its corresponding Markov chain, and present an upper bound of the discrepancy in terms of the mixing time of the Markov chain.

Keywords

  1. rotor-router model
  2. Markov chain Monte Carlo (MCMC)
  3. mixing time

MSC codes

  1. 05C81
  2. 60J10
  3. 68W20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Akbari and P. Berenbrink, Parallel rotor walks on finite graphs and applications in discrete load balancing, in Proceedings SPAA 2013, ACM, New York, 2013, pp. 186--195.
2.
D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs, manuscript, http://www.stat.berkeley.edu/ aldous/RWG/book.html.
3.
O. Angel, A. E. Holroyd, J. Martin, and J. Propp, Discrete Low Discrepancy Sequences, https://arxiv.org/abs/0910.1077 (2010).
4.
S. Angelopoulos, B. Doerr, A. Huber, and K. Panagiotou, Tight bounds for quasirandom rumor spreading, Electron. J. Combin., 16 (2009), R102.
5.
R. Bubley and M. Dyer, Faster random generation of linear extensions, Discrete Math., 201 (1999), pp. 81--88.
6.
E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski, Euler tour lock-in problem in the rotor-router model, in Proceedings DISC 2009, Springer, Berlin, 2009, pp. 423--435
7.
P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and P. Uznanski, Improved analysis of deterministic load-balancing schemes, in Proceedings PODC 2015, ACM, New York, 2012, pp. 301--310.
8.
J. Cooper, B. Doerr, T. Friedrich, and J. Spencer, Deterministic random walks on regular trees, Random Structures Algorithms, 37 (2010), pp. 353--366.
9.
J. Chalopin, S. Das, P. Gawrychowski, A. Kosowski, A. Labourel and P. Uznanski, Limit Behavior of the Multi-agent Rotor-Router System, in Proceedings DISC 2015, Springer, Berlin, 2015, pp. 123--139.
10.
J. Cooper, B. Doerr, J. Spencer, and G. Tardos, Deterministic random walks on the integers, European J. Combin., 28 (2007), pp. 2072--2090.
11.
J. Cooper and J. Spencer, Simulating a random walk with constant error, Combin. Probab. Comput., 15 (2006), pp. 815--822.
12.
B. Doerr, Introducing quasirandomness to computer science, in Efficient Algorithms, Lecture Notes in Comput. Sci. 5760, Springer, Berlin, 2009, pp. 99--111.
13.
B. Doerr and T. Friedrich, Deterministic random walks on the two-dimensional grid, Combin. Probab. Comput., 18 (2009), pp. 123--144.
14.
B. Doerr, T. Friedrich, M. Künnemann, and T. Sauerwald, Quasirandom rumor spreading: An experimental analysis, ACM J. Exp. Algorithmics, 16 (2011), 3.
15.
B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading, ACM Trans. Algorithms, 11 (2014), 9.
16.
B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading on expanders, Electron. Notes Discrete Math., 34 (2009), pp. 243--247.
17.
B. Doerr, A. Huber, and A. Levavi, Strong robustness of randomized rumor spreading protocols, Discrete Appl. Math., 161 (2013), pp. 778--793.
18.
T. Friedrich, M. Gairing, and T. Sauerwald, Quasirandom load balancing, SIAM J. Comput., 41 (2012), pp. 747--771.
19.
T. Friedrich and T. Sauerwald, The cover time of deterministic random walks, Electron. J. Combin., 17 (2010), R167.
20.
A. E. Holroyd and J. Propp, Rotor walks and Markov chains, in Algorithmic Probability and Combinatorics, M. Lladser, R. S. Maier, M. Mishna, and A. Rechnitzer, eds., AMS, Providence, RI, 2010, pp. 105--126.
21.
A. Huber and N. Fountoulakis, Quasirandom broadcasting on the complete graph is as fast as randomized broadcasting, Electron. Notes Discrete Math., 34 (2009), pp. 553--559.
22.
S. Ikeda, I. Kubo, and M. Yamashita, The hitting and cover times of random walks on finite graphs using local degree information, Theoret. Comput. Sci, 410 (2009), pp. 94--100.
23.
D. Jerison, L. Levine, and S. Sheffield, Logarithmic fluctuations for internal DLA, J. Amer. Math. Soc., 25 (2012), pp. 271--301.
24.
M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An approach to approximate counting and integration, in Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum ed., PWS Publishing, Boston, 1996, Chap. 12.
25.
M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries, J. ACM, 51 (2004), pp. 671--697.
26.
H. Kajino, S. Kijima, and K. Makino, Discrepancy Analysis of Deterministic Random Walks on Finite Irreducible Digraphs, manuscript.
27.
S. Kijima, K. Koga, and K. Makino, Deterministic random walks on finite graphs, Random Structures Algorithms, 46 (2015), pp. 739--761.
28.
S. Kijima and T. Matsui, Approximation algorithm and perfect sampler for closed Jackson networks with single servers, SIAM J. Comput., 38 (2008), pp. 1484--1503.
29.
A. Kosowski and D. Pajak, Does adding more agents make a difference? A case study of cover time for the rotor-router, in Proceedings of the 41st International Colloquium on Automata, Languages and Programming, (ICALP 2014), Springer, Heidelberg, pp. 544--555.
30.
M. Kleber, Goldbug variations, Math. Intelligencer, 27 (2005), pp. 55--63.
31.
G. F. Lawler, M. Bramson, and D. Griffeath, Internal diffusion limited aggregation, Ann. Probab., 20 (1992), pp. 2117--2140.
32.
L. Levine and Y. Peres, The rotor-router shape is spherical, Math. Intelligencer, 27 (2005), pp. 9--11.
33.
L. Levine and Y. Peres, Spherical asymptotics for the rotor-router model in Z^d, Indiana Univ. Math. J., 57 (2008), pp. 431--450.
34.
L. Levine and Y. Peres, Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile, Potential Anal., 30 (2009), pp. 1--27.
35.
D. A. Levine, Y. Peres, and E. L. Wilmer, Markov Chain and Mixing Times, AMS, Providence, RI, 2008.
36.
B. Morris and A. Sinclair, Random walks on truncated cubes and sampling 0-1 knapsack solutions, SIAM J. Comput., 34 (2004), pp. 195--226.
37.
R. Montenegro and P. Tetali, Mathematical Aspects of Mixing Times in Markov Chains, NOW Publishers, Boston, 2006.
38.
H. Niederreiter, Quasi-Monte Calro methods and pseudo-random numbers, Bull. Amer. Math. Soc., 84 (1978), pp. 957--1042.
39.
V. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, Eulerian walkers as a model of self-organized criticality, Phys. Rev. Lett., 77 (1996), pp. 5079--5082.
40.
J. Propp and D. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms, 9 (1996), pp. 223--252.
41.
Y. Rabani, A. Sinclair, and R. Wanka, Local divergence of Markov chains and analysis of iterative load balancing schemes, in Proceedings FOCS 1998, IEEE Computer Society, Los Alamitos, CA, 1998, pp. 694--705.
42.
S. Sano, N. Miyoshi, and R. Kataoka, $m$-Balanced words: A generalization of balanced words, Theoret. Comput. Sci., 314 (2004), pp. 97--120.
43.
T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita, Deterministic Random Walks for Irrational Transition Probabilities, IPSJ SIG Technical Reports, 2012-AL-142(2), 2012 (in Japanese).
44.
T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita, L_\infty-discrepancy analysis of polynomial-time deterministic samplers emulating rapidly mixing chains, in Computing and Combinatorics (COCOON 2014), Lecture Notes in Comput. Sci. 8591, Springer, Cham, Switzerland, 2019, pp. 25--36.
45.
T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita, Total variation discrepancy of deterministic random walks for ergodic Markov chains, Theoret. Comput. Sci., 699 (2017), pp. 63--74.
46.
A. Sinclair, Algorithms for Random Generation and Counting: A Markov chain approach, Birkhäuser, Boston, 1993.
47.
R. Tijdeman, The chairman assignment problem, Discrete Math., 32 (1980), pp. 323--330.
48.
J. G. van der Corput, Verteilungsfunktionen, Proc. Akad. Amsterdam, 38 (1935), pp. 813--821.
49.
V. Yanovski, I. A. Wagner, and A. M. Bruckstein, A distributed ant algorithm for efficiently patrolling a network, Algorithmica, 37 (2003), pp. 165--186.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2180 - 2193
ISSN (online): 1095-7146

History

Submitted: 2 August 2016
Accepted: 1 June 2018
Published online: 30 August 2018

Keywords

  1. rotor-router model
  2. Markov chain Monte Carlo (MCMC)
  3. mixing time

MSC codes

  1. 05C81
  2. 60J10
  3. 68W20

Authors

Affiliations

Funding Information

Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 : 15J03840, 15K15938, 25700002, 15H02666, 17H07116

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media