Open access

The Mapping-Adaptive Convolution: A Fundamental Theory for Homography or Perspective Invariant Matching Methods

Abstract

If the local area of a three-dimensional object surface can be considered as a plane, the deformation between its two images captured from different camera placements is modelled by a homography. By tuning the parameters in a homographic mapping, all possible deformations caused by the change of camera placement can be simulated for the local feature matching method. Since aliasing may happen when resampling the original image to the geometry of the simulated image, an antialiasing convolution must be applied before resampling. However, the antialiasing convolution itself must also be homography-adaptive. In the scale invariant feature transform (SIFT) or affine-SIFT (ASIFT) method, the similitude or affine rectification scheme of the convolution is applied to solve this problem under similitude or affine mapping. However, these schemes will not work under homographic or perspective mapping. Although the perspective invariant matching method (perspective-SIFT or PSIFT) has been proposed in some references, the antialiasing scheme with perspective-adaption has not been proposed. This paper will show that the standard convolution is not adaptive to the change of planar mapping, and the simulated images under the same simulated camera placement will not be identical if they are resampled from different original images captured from different camera placements. To solve this issue, a natural extension of the standard convolution, the mapping-adaptive convolution (MA-convolution), is proposed, and its mapping-adaption is proved mathematically in this paper. Based on this novel convolution, the homography invariant simulation scheme can be modelled. We have applied the MA-convolution to the antialiasing scheme in the PSIFT method, and the effectiveness of the MA-convolution has been verified experimentally.

Keywords

  1. image matching
  2. convolution
  3. homography invariance
  4. SIFT
  5. ASIFT
  6. PSIFT

MSC codes

  1. 68T10
  2. 68T45

Formats available

You can view the full content in the following formats:

References

1.
D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60 (2004), pp. 91--110, https://doi.org/10.1023/B:VISI.0000029664.99615.94.
2.
J.-M. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image comparison, SIAM J. Imaging Sci., 2 (2009), pp. 438--469, https://doi.org/10.1137/080732730.
3.
A.A. Goshtasby, 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications, John Wiley & Sons, 2005.
4.
K. Mikolajczyk and C. Schmid, Scale & affine invariant interest point detectors, Int. J. Comput. Vis. 60 (2004), pp. 63--86, https://doi.org/10.1023/B:VISI.0000027790.02288.f2.
5.
H. Aan\ae s, A.L. Dahl, and K.S. Pedersen, Interesting interest points, Int. J. Comput. Vis., 97 (2012), pp. 18--35, https://doi.org/10.1007/s11263-011-0473-8.
6.
E. González, A. Adán, and V. Feliú, 2D shape representation and similarity measurement for 3D recognition problems: An experimental analysis, Pattern Recogn. Lett., 33 (2012), pp. 199--217, https://doi.org/10.1016/j.patrec.2011.09.033.
7.
Z. Liu, J. An, and Y. Jing, A simple and robust feature point matching algorithm based on restricted spatial order constraints for aerial image registration, IEEE Trans. Geosci. Remote Sens., 50 (2012), pp. 514--527, https://doi.org/10.1109/TGRS.2011.2160645.
8.
T. Kadir and M. Brady, Saliency, scale and image description, Int. J. Comput. Vis., 45 (2001), pp. 83--105, https://doi.org/10.1023/A:1012460413855.
9.
C. Harris and M. Stephens, A combined corner and edge detector, in Proceedings of the Fourth Alvey Vision Conference, 1988, pp. 147--151, https://doi.org/10.5244/C.2.23.
10.
B. Zitova and J. Flusser, Image registration methods: A survey, Image Vision Comput., 21 (2003), pp. 977--1000, https://doi.org/10.1016/S0262-8856(03)00137-9.
11.
M.A. Fischler and R.C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Comm. ACM, 24 (1981), pp. 381--395, https://doi.org/10.1145/358669.358692.
12.
G. Cai, P. Jodoin, S. Li, Y. Wu, S. Su, and Z. Huang, Perspective-SIFT: An efficient tool for low-altitude remote sensing image registration, Signal Process., 93 (2013), pp. 3088--3110, https://doi.org/10.1016/j.sigpro.2013.04.008.
13.
K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 1615--1630, https://doi.org/10.1109/TPAMI.2005.188.
14.
G. Yu and J.M. Morel, A fully affine invariant image comparison method, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '09), 2009, pp. 1597--1600, https://doi.org/10.1109/ICASSP.2009.4959904.
15.
D. Gossow, D. Weikersdorfer, and M. Beetz, Distinctive texture features from perspective-invariant keypoints, in Proceedings of the International Conference on Pattern Recognition (ICPR '12), 2012, pp. 2764--2767.
16.
K. Köser and R. Koch, Perspectively invariant normal features, in Proceedings of the IEEE International Conference on Computer Vision (ICCV '07), 2007, pp. 1--8, https://doi.org/10.1109/ICCV.2007.4408837.
17.
R. Weng, J. Lu, J. Hu, G. Yang, and Y. Tan, Robust feature set matching for partial face recognition, in Proceedings of the IEEE International Conference on Computer Vision (ICCV '13), 2013, pp. 601--608, https://doi.org/10.1109/ICCV.2013.80.
18.
G.J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, Segmentation and recognition using structure from motion point clouds, in Proceedings of the European Conference on Computer Vision (ECCV '08), 2008, pp. 44--57, https://doi.org/10.1007/978-3-540-88682-2_5.
19.
D. Ta, W. Chen, N. Gelfand, and K. Pulli, SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '09), 2009, pp. 2937--2944, https://doi.org/10.1109/CVPRW.2009.5206831.
20.
R. Koch, M. Pollefeys, and L.V. Gool, Realistic surface reconstruction of \textup3D scenes from uncalibrated image sequences, J. Vis. Comput. Animat., 11 (2000), pp. 115--127, https://doi.org/10.1002/1099-1778(200007)11:3%3C115::AID-VIS228%3E3.0.CO;2-2.
21.
Z. Zhang, Estimating motion and structure from correspondences of line segments between two perspective images, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), pp. 1129--1139, https://doi.org/10.1109/34.476506.
22.
S.H. Park, K.M. Lee, and S.U. Lee, A line feature matching technique based on an eigenvector approach, Comput. Vis. Image Underst., 77 (2000), pp. 263--283, https://doi.org/10.1006/cviu.2000.0808.
23.
F.C.D. Tsai, Robust affine invariant matching with application to line features, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '93), 1993, pp. 393--399, https://doi.org/10.1109/CVPR.1993.341100.
24.
C.T. Zahn and R.Z. Roskies, Fourier descriptors for plane closed curves, IEEE Trans. Comput., 21 (1972), pp. 269--281, https://doi.org/10.1109/TC.1972.5008949.
25.
M.K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8 (1962), pp. 179--187, https://doi.org/10.1109/TIT.1962.1057692.
26.
A. Goshtasby, Description and discrimination of planar shapes using shape matrices, IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), pp. 738--743, https://doi.org/10.1109/TPAMI.1985.4767734.
27.
K. Mikolajczyk and C. Schmid, An affine invariant interest point detector, in Proceedings of the European Conference on Computer Vision (ECCV '02), 2002, pp. 128--142, https://doi.org/10.1007/3-540-47969-4_9.
28.
J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, Image Vision Comput., 22 (2004), pp. 761--767, https://doi.org/10.1016/j.imavis.2004.02.006.
29.
K. Mikolajczyk and C. Schmid, Indexing based on scale invariant interest points, in Proceedings of the IEEE International Conference on Computer Vision (ICCV '01), 2001, pp. 525--531, https://doi.org/10.1109/ICCV.2001.937561.
30.
L. Moisan and B. Stival, A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix, Int. J. Comput. Vis., 57 (2004), pp. 201--218, https://doi.org/10.1023/B:VISI.0000013094.38752.54.
31.
Y. Pang, W. Li, Y. Yuan, and J. Pan, Fully affine invariant SURF for image matching, Neurocomput., 85 (2012), pp. 6--10, https://doi.org/10.1016/j.neucom.2011.12.006.
32.
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., Cambridge University Press, Cambridge, UK, 2003.
33.
F. Dibos, Projective invariant features detection and the registration group, in Mathematical Image Processing, Springer Proc. Math. 5, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 91--105, https://doi.org/10.1007/978-3-642-19604-1_5.
34.
J.J. Koenderink, The structure of images, Biol. Cybern., 50 (1984), pp. 363--370, https://doi.org/10.1007/BF00336961.
35.
C. Jonchery, F. Dibos, and G. Keopfler, Camera motion estimation through planar deformation determination, J. Math. Imaging Vision, 32 (2008), pp. 73--87, https://doi.org/10.1007/s10851-008-0086-1.
36.
D. Shreiner, OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions \textup3.0 and 3.1, 7th ed., Pearson Education, 2010.
37.
W.K. Pratt, Digital Image Processing: PIKS Inside, 3rd ed., John Wiley & Sons, New York, 2001, https://doi.org/10.1002/0471221325.
38.
N. Lerner, A Course on Integration Theory: Including More than 150 Exercises with Detailed Answers, Springer, Basel, 2014, https://doi.org/10.1007/978-3-0348-0694-7.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 1767 - 1803
ISSN (online): 1936-4954

History

Submitted: 22 August 2016
Accepted: 1 August 2017
Published online: 12 October 2017

Keywords

  1. image matching
  2. convolution
  3. homography invariance
  4. SIFT
  5. ASIFT
  6. PSIFT

MSC codes

  1. 68T10
  2. 68T45

Authors

Affiliations

Funding Information

National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 61471250, 61571313, 61602330

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media