Abstract

A set of nonnegative matrices $\mathcal{M}=\{M_1, M_2, \ldots, M_k\}$ is called primitive if there exist possibly equal indices $i_1, i_2, \ldots, i_m$ such that $M_{i_1} M_{i_2} \cdots M_{i_m}$ is entrywise positive. The length of the shortest such product is called the exponent of $\mathcal{M}$. Recently, connections between synchronizing automata and primitive sets of matrices were established. In the present paper, we strengthen these links by providing equivalence results, both in terms of combinatorial characterization and computational complexity. We pay special attention to the set of matrices without zero rows and columns, denoted by $\mathscr{NZ}$, due to its intriguing connections to the Černý conjecture. We rely on synchronizing automata theory to derive a number of results about primitive sets of matrices. Making use of an asymptotic estimate by Rystsov [Cybernetics, 16 (1980), pp. 194--198], we show that the maximal exponent $\exp(n)$ of primitive sets of $n \times n$ matrices satisfy $\lim_{n\rightarrow\infty} \tfrac{\log \exp(n)}{n} = \tfrac{\log 3}{3}$ and that the problem of deciding whether a given set of matrices is primitive is PSPACE-complete, even in the case of two matrices. Furthermore, we characterize the computational complexity of different problems related to the exponent of $\mathscr{NZ}$ matrix sets and present a bound of $2n^2 -5n +5$ on the exponent when considering the subclass of matrices having total support.

Keywords

  1. nonnegative matrices
  2. primitive sets of matrices
  3. the exponent of a matrix set
  4. carefully synchronizing automata
  5. the Černý conjecture

MSC codes

  1. 15B34
  2. 15B48
  3. 05A05
  4. 68R05
  5. 68Q45

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Akelbek and S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl., 430 (2009), pp. 1111--1130.
2.
Y. A. Al'pin and V. S. Al'pina, Combinatorial properties of irreducible semigroups of nonnegative matrices, J. Math. Sci., 191 (2013), pp. 4--9.
3.
D. S. Ananichev, M. V. Volkov, and V. V. Gusev, Primitive digraphs with large exponents and slowly synchronizing automata, J. Math. Sci. 192 (2013), pp. 263--278.
4.
J. Araújo, P. J. Cameron, and B. Steinberg, Between Primitive and 2-transitive: Synchronization and Its Friends, http://arxiv.org/abs/1511.03184, 2015.
5.
S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, Cambridge, 2009.
6.
V. D. Blondel, R. M. Jungers, and A. Olshevsky, On primitivity of sets of matrices, Automatica, 61 (2015), pp. 80--88.
7.
R. Brualdi and H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
8.
R. A. Brualdi, Combinatorial Matrix Classes, Cambridge University Press, Cambridge, 2006.
9.
J. Černý, Poznámka k homogénnym experimentom s konečnými automatmi, Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied, 14 (1964), pp. 208--216 (in Slovak).
10.
J. Černý, A. Pirická, and B. Rosenauerová, On directable automata, Kybernetica, 7 (1971), pp. 289--298.
11.
J. E. Cohen and P. H. Sellers, Sets of nonnegative matrices with positive inhomogeneous products, Linear Algebra Appl., 47 (1982), pp. 185--192.
12.
D. Eppstein, Reset sequences for monotonic automata, SIAM J. Comput., 19 (1990), pp. 500--510.
13.
W. Fang, Y. Gao, Y. Shao, W. Gao, G. Jing, and Z. Li, The generalized competition indices of primitive minimally strong digraphs, Linear Algebra Appl., 493 (2016), pp. 206--226.
14.
E. Fornasini and M. E. Valcher, Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs, Linear Algebra Appl., 263 (1997), pp. 275--310.
15.
P. Frankl, An extremal problem for two families of sets, European J. Combin., 3 (1982), pp. 125--127.
16.
P. Gawrychowski and D. Straszak, Strong inapproximability of the shortest reset word, in Mathematical Foundations of Computer Science, Lecture Notes in Compt. Sci. 9234, Springer, New York, 2015, pp. 243--255.
17.
Z. Gazdag, S. Iván, and J. Nagy-György, Improved upper bounds on synchronizing nondeterministic automata, Inform. Process. Lett., 109 (2009), pp. 986--990.
18.
M. Gerbush and B. Heeringa, Approximating Minimum Reset Sequences, in Implementation and Application of Automata, Lecture Notes in Comput. Sci. 6482, Springer, New York, 2011, pp. 154--162.
19.
E. Goles and M. Noual, Disjunctive networks and update schedules, Adv. Appl. Math., 48 (2012), pp. 646--662.
20.
F. Gonze, R. Jungers, and A. Trahtman, A note on a recent attempt to improve the Pin--Frankl bound, Discrete Math. Theor. Comput. Sci., 17 (2015), pp. 307--308.
21.
D. J. Hartfiel, Nonhomogeneous Matrix Products, World Scientific, River Edge, NJ, 2002.
22.
J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education, London, 2001.
23.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1995.
24.
B. Imreh and M. Steinby, Directable nondeterministic automata, Acta Cybernet., 14 (1999), pp. 105--115.
25.
J. Kari, Synchronizing finite automata on Eulerian digraphs, Theoret. Comput. Sci., 295 (2003), pp. 223--232.
26.
A. A. Klyachko, I. K. Rystsov, and M. A. Spivak, An extremal combinatorial problem associated with the bound on the length of a synchronizing word in an automaton, Cybernetics, 23 (1987), pp. 165--171.
27.
D. O. Logofet, Markov chains as succession models: New perspectives of the classic paradigm, Lesovedenie, 2 (2010), pp. 46--59.
28.
P. Martyugin, Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata, Theory Comput. Syst., 54 (2014), pp. 293--304.
29.
P. V. Martyugin, A lower bound for the length of the shortest carefully synchronizing words, Russian Math., 54 (2010), pp. 46--54.
30.
C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
31.
B. K. Natarajan, An algorithmic approach to the automated design of parts orienters, in Proceedings of the Symposium on Foundations of Computer Science, 1986, pp. 132--142.
32.
J. Olschewski and M. Ummels, The Complexity of Finding Reset Words in Finite Automata, in Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 6281, Springer, New York, 2010, pp. 568--579.
33.
A. Paz, Definite and quasidefinite sets of stochastic matrices, Proc. Amer. Math. Soc., 16 (1965), pp. 634--641.
34.
H. Perfect and L. Mirsky, The distribution of positive elements in doubly-stochastic matrices, J. Lond. Math. Soc., s1-40 (1965), pp. 689--698.
35.
J.-E. Pin, On Two Combinatorial Problems Arising from Automata Theory, in Graph Theory and Combinatorics, North-Holland Math. Stud. 75, 1983, pp. 535--548.
36.
V. Y. Protasov and A. S. Voynov, Sets of nonnegative matrices without positive products, Linear Algebra Appl., 437 (2012), pp. 749--765.
37.
I. K. Rystsov, Asymptotic estimate of the length of a diagnostic word for a finite automaton, Cybernetics, 16 (1980), pp. 194--198.
38.
W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. System Sci., 4 (1970), pp. 177--192.
39.
R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math., 21 (1967), pp. 343--348.
40.
M. V. Volkov, Synchronizing Automata and the C̆erný Conjecture, in Language and Automata Theory and Applications, Lecture Notes in Comput. Sci. 5196, Springer, New York, 2008, pp. 11--27.
41.
A. S. Voynov, Shortest positive products of nonnegative matrices, Linear Algebra Appl., 439 (2013), pp. 1627--1634.
42.
A. S. Voynov and V. Y. Protasov, Compact noncontraction semigroups of affine operators, Sb. Math., 206 (2015), pp. 921--940.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 83 - 98
ISSN (online): 1095-7162

History

Submitted: 14 September 2016
Accepted: 26 September 2017
Published online: 16 January 2018

Keywords

  1. nonnegative matrices
  2. primitive sets of matrices
  3. the exponent of a matrix set
  4. carefully synchronizing automata
  5. the Černý conjecture

MSC codes

  1. 15B34
  2. 15B48
  3. 05A05
  4. 68R05
  5. 68Q45

Authors

Affiliations

Funding Information

Communaute francaise de Belgique : ARC 13/18-054
Fonds De La Recherche Scientifique - FNRS https://doi.org/10.13039/501100002661
Ministry of Education and Science of the Russian Federation https://doi.org/10.13039/501100003443
Russian Foundation for Basic Research https://doi.org/10.13039/501100002261 : 16-01-00795

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media