A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces
Abstract
We present a new high-order, local meshfree method for numerically solving reaction diffusion equations on smooth surfaces of codimension 1 embedded in $\mathbb{R}^d$. The novelty of the method is in the approximation of the Laplace--Beltrami operator for a given surface using Hermite radial basis function (RBF) interpolation over local node sets on the surface. This leads to compact (or implicit) RBF generated finite difference (RBF-FD) formulas for the Laplace--Beltrami operator, which gives rise to sparse differentiation matrices. The method only requires a set of (scattered) nodes on the surface and an approximation to the surface normal vectors at these nodes. Additionally, the method is based on Cartesian coordinates and thus does not suffer from any coordinate singularities. We also present an algorithm for selecting the nodes used to construct the compact RBF-FD formulas that can guarantee the resulting differentiation matrices have desirable stability properties. The improved accuracy and computational cost that can be achieved with this method over the standard (explicit) RBF-FD method are demonstrated with a series of numerical examples. We also illustrate the flexibility and general applicability of the method by solving two different reaction-diffusion equations on surfaces that are defined implicitly and only by point clouds.
1. Advanpix Multiprecision Computing Toolbox for MATLAB, http://www.advanpix.com/, accessed 2016-06-09.
2. . Wetton, Implicit-explicit methods for time-dependent PDEs , SIAM J. Numer. Anal , 32 ( 1997 ), pp. 797 -- 823 .
3. , On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , J. Comput. Phys. , 332 ( 2017 ), pp. 257 -- 273 .
4. , RBF-FD formulas and convergence properties , J. Comput. Phys. , 229 ( 2010 ), pp. 8281 -- 8295 .
5. , Tensor Analysis on Manifolds , Macmillan , New York , 1968 .
6. , Numerical methods for high dimensional Hamilton--Jacobi equations using radial basis functions , J. Comput. Phys. , 196 ( 2004 ), pp. 327 -- 347 .
7. , Local RBF-FD solutions for steady convection--diffusion problems , Int. J. Numer. Meth. , 72 ( 2007 ), pp. 352 -- 378 .
8. , MESHLAB: An open-source $3$D mesh processing system ,
ERCIM News , ( 2008 ), pp. 45 -- 46 .9. , The Numerical Treatment of Differential Equations , 3 rd ed., Springer , Berlin , 1966 .
10. , Adaptive meshless centres and RBF stencils for Poisson equation , J. Comput. Phys. , 230 ( 2011 ), pp. 287 -- 304 .
11. , Interpolation in the limit of increasingly flat radial basis functions , Comput. Math. Appl. , 43 ( 2002 ), pp. 413 -- 422 .
12. , Meshfree Approximation Methods with MATLAB , Interdisciplinary Mathematical Sciences 6 , World Scientific , Singapore , 2007 .
13. , Stable evaluation of Gaussian radial basis function interpolants , SIAM J. Sci. Comput. , 34 ( 2012 ), pp. A737 -- A762 .
14. , On the role of polynomials in RBF-FD approximations I. Interpolation and accuracy , J. Comput. Phys. , 321 ( 2016 ), pp. 21 -- 38 .
15. , A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , J. Comput. Phys. , 231 ( 2012 ), pp. 4078 -- 4095 .
16. , A radial basis function method for the shallow water equations on a sphere , Proc. R. Soc. A , 465 ( 2009 ), pp. 1949 -- 1976 .
17. , A Primer on Radial Basis Functions with Applications to the Geosciences , SIAM , Philadelphia , 2014 .
18. , Stable computations with Gaussian radial basis functions , SIAM J. Sci. Comput. , 33 ( 2011 ), pp. 869 -- 892 .
19. , Stabilization of RBF-generated finite difference methods for convective PDEs , J. Comput. Phys. , 230 ( 2011 ), pp. 2270 -- 2285 .
20. , Stable calculation of Gaussian-based RBF-FD stencils , Comput. Math. Appl. , 65 ( 2013 ), pp. 627 -- 637 .
21. , A stable algorithm for flat radial basis functions on a sphere , SIAM J. Sci. Comput. , 30 ( 2007 ), pp. 60 -- 80 .
22. , Stable computation of multiquadric interpolants for all values of the shape parameter , Comput. Math. Appl. , 48 ( 2004 ), pp. 853 -- 867 .
23. , The Runge phenomenon and spatially variable shape parameters in RBF interpolation , Comput. Math. Appl. , 54 ( 2007 ), pp. 379 -- 398 .
24. , Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates , SIAM J. Numer. Anal. , 50 ( 2012 ), pp. 1753 -- 1776 .
25. , Order-preserving derivative approximation with periodic radial basis functions , SIAM J. Numer. Anal. , 41 ( 2015 ), pp. 23 -- 53 .
26. , A high-order kernel method for diffusion and reaction-diffusion equations on surfaces , J. Sci. Comput., ( 2013 ), pp. 1 -- 31 .
27. . Gia, Approximation of parabolic pdes on spheres using spherical basis functions , Adv. Comput. Math. , 22 ( 2005 ), pp. 377 -- 397 .
28. , Localization of generalized eigenvalues by Cartesian ovals , Numer. Linear Algebra Appl. , 19 ( 2012 ), pp. 728 -- 741 .
29. , Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , Comput. Math. Appl. , 49 ( 2005 ), pp. 103 -- 130 .
30. , Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions , SIAM J. Sci. Comput. , 35 ( 2013 ), pp. A2096 -- A2119 .
31. , Compact finite difference schemes with spectral-like resolution , J. Comput. Phys. , 103 ( 1992 ), pp. 16 -- 42 .
32. , The implicit closest point method for the numerical solution of partial differential equations on surfaces , SIAM J. Sci. Comput. , 31 ( 2010 ), pp. 4330 -- 4350 .
33. , Generalized hermite interpolation via matrix-valued conditionally positive definite functions , Math. Comput. , 63 ( 1994 ), pp. 661 -- 688 .
34. , DistMesh -- a simple mesh generator in MATLAB . http://persson.berkeley.edu/distmesh/, accessed 2016-06-09. , http://persson.berkeley.edu/distmesh/.
35. , A simple mesh generator in MATLAB , SIAM Rev. , 46 ( 2004 ), pp. 329 -- 345 .
36. , The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , J. Comput. Phys. , 231 ( 2012 ), pp. 4662 -- 4675 .
37. , Multivariate interpolation by polynomials and radial basis functions , Constr. Approx. , 21 ( 2005 ), pp. 293 -- 317 .
38. , A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction--diffusion equations on surfaces , J. Sci. Comput. , 63 ( 2014 ), pp. 745 -- 768 .
39. , Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier--Stokes equations , Comput. Methods Appl. Mech. Eng. , 192 ( 2003 ), pp. 941 -- 954 .
40. , The use of PDE centers in the local RBF Hermitean method for $3$D convective-diffusion problems , J. Comput. Phys. , 228 ( 2009 ), pp. 4606 -- 4624 .
41. , Gershgorin theory for the generalized eigenvalue problem ${A}x=\lambda {B}x$ , Math. Comput. , 29 ( 1975 ), pp. 600 -- 606 .
42. , A hybrid radial basis function--pseudospectral method for thermal convection in a $3$-D spherical shell , Geochem. Geophys. Geosyst. , 11 ( 2010 ).
43. , Scattered node compact finite difference-type formulas generated from radial basis functions , J. Comput. Phys. , 212 ( 2006 ), pp. 99 -- 123 .
44. , Hermite--Birkhoff interpolation of scattered data by radial basis functions , Approx. Theory Appl. , 8 ( 1992 ), pp. 1 -- 10 .