Abstract

This paper presents a seamless algorithm for the application of the multilevel Monte Carlo (MLMC) method to the ensemble transform particle filter. The algorithm uses a combination of optimal coupling transformations between coarse and fine ensembles in difference estimators within a multilevel framework, to minimize estimator variance. It differs from that of Gregory, Cotter, and Reich [SIAM J. Sci. Comput., 38 (2016), pp. A1317--A1338] in that strong coupling between the coarse and fine ensembles is seamlessly maintained during all stages of the assimilation algorithm, instead of using independent transformations to equal weights followed by recoupling with an assignment problem. This modification is found to lead to an increased rate in variance decay between coarse and fine ensembles with level in the hierarchy, a key component of MLMC. This offers the potential for greater computational cost reductions. This is shown, alongside evidence of asymptotic consistency, in numerical examples.

MSC codes

  1. multilevel Monte Carlo
  2. optimal transport
  3. particle filters

MSC codes

  1. 65C05
  2. 62M20
  3. 93E11
  4. 93B40
  5. 90C05

Formats available

You can view the full content in the following formats:

References

1.
O. Cappé, S. J. Godsill, and E. Moulines, An overview of existing methods and recent advances in sequential Monte Carlo, Proc. IEEE, 95 (2007), pp. 899--924.
2.
Y. Cheng and S. Reich, A McKean Optimal Transportation Perspective on Feynman-Kac Formulae with Application to Data Assimilation, preprint, arXiv:1311.6300, 2013.
3.
A. Chernov, H. Hoel, K. Law, F. Nobile, and R. Tempone, Multilevel Ensemble Kalman Filtering for Spatially Extended Models, arXiv:1608.08558, 2016.
4.
N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Statist., 32 (2004), pp. 2385--2411.
5.
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15.
6.
J. de Wiljes, W. Acevedo, and S. Reich, A Second-Order Accurate Ensemble Transform Particle Filter, preprint, arXiv:1608.08179, 2016.
7.
A. Doucet and A. M. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, Handb. Nonlinear Filtering, 12 (2011), pp. 656--704.
8.
M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617.
9.
M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259--328.
10.
A. Gregory, C. J. Cotter, and S. Reich, Multilevel ensemble transform particle filtering, SIAM J. Sci. Comput., 38 (2016), pp. A1317--A1338.
11.
H. Hoel, K. J. H. Law, and R. Tempone, Multilevel ensemble Kalman filtering, SIAM J. Numer. Anal., 54 (2016), pp. 1813--1839.
12.
A. Jasra, K. Kamatani, K. J. H. Law, and Y. Zhou, Multilevel Particle Filter, preprint, arXiv:1510.04977, 2015.
13.
A. Jasra, K. Kamatani, K. J. H. Law, and Y. Zhou, Bayesian Static Parameter Estimation for Partially Observed Diffusions via Multilevel Monte Carlo, preprint, arXiv:1701.05892, 2017.
14.
J. Munkres, Algorithms for the assignment and transportation problems, J. SIAM, 5 (1957), pp. 32--38.
15.
S. Reich, A nonparametric ensemble transform method for Bayesian inference, SIAM J. Sci. Comput., 35 (2013), pp. A2013--A2024.
16.
S. Reich and C. J. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, Cambridge, UK, 2015.
17.
D. Sen, A. H. Thiery, and A. Jasra, On coupling particle filter trajectories, Statist. Comput., 2017, pp. 1--15.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A2684 - A2701
ISSN (online): 1095-7197

History

Submitted: 3 November 2016
Accepted: 20 June 2017
Published online: 28 November 2017

MSC codes

  1. multilevel Monte Carlo
  2. optimal transport
  3. particle filters

MSC codes

  1. 65C05
  2. 62M20
  3. 93E11
  4. 93B40
  5. 90C05

Authors

Affiliations

Funding Information

Natural Environment Research Council https://doi.org/10.13039/501100000270

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media