Abstract

In this paper, we study zero-one laws for the Erdös--Rényi random graph model $G(n,p)$ in the case when $p = n^{-\alpha}$ for $\alpha>0$. For a given class $\mathcal{K}$ of logical sentences about graphs and a given function $p=p(n)$, we say that $G(n,p)$ obeys the zero-one law (w.r.t. the class $\mathcal{K}$) if each sentence $\varphi\in\mathcal{K}$ is either asymptotically almost surely (a.a.s.) true or a.a.s. false for $G(n,p)$. In this paper, we consider first order properties and monadic second order properties of bounded quantifier depth $k$, that is, the length of the longest chain of nested quantifiers in the formula expressing the property. We call zero-one laws for properties of quantifier depth $k$ the zero-one $k$-laws. The main results of this paper concern the zero-one $k$-laws for monadic second order (MSO) properties. We determine all values $\alpha>0$, for which the zero-one $3$-law for MSO properties does not hold. We also show that, in contrast to the case of the $3$-law, there are infinitely many values of $\alpha$ for which the zero-one $4$-law for MSO properties does not hold. To this end, we analyze the evolution of certain properties of $G(n,p)$ that may be of independent interest.

Keywords

  1. zero-one laws
  2. monadic properties
  3. random graphs

MSC codes

  1. 05C80
  2. 05C57

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley & Sons, New York, 2000.
2.
B. Bollobás, Random Graphs, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
3.
B. Bollobás, Random graphs, in Combinatorics (Swansea 1981), London Math. Soc. Lecture Note Ser. 52, Cambridge University Press, Cambridge, UK, pp. 80--102.
4.
B. Bollobás, Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc., 90 (1981), pp. 197--206.
5.
B. Bollobás and J. C. Wierman, Subgraph counts and containment probabilities of balanced and unbalanced subgraphs in a large random graph, in Graph Theory and Its Applications: East and West, Ann. New York Acad. Sci. 576, New York Academy of Sciences, New York, 1989, pp. 63--70.
6.
H.-D. Ebbinghaus and J. Flum, Finite Model Theory, 2nd ed., Perspect. Math. Logic, Springer-Verlag, Berlin, 1999.
7.
A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math., 49 (1960/1961), pp. 129--141.
8.
P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), pp. 17--61.
9.
P. Heinig, T. Müller, M. Noy, and A. Taraz, Logical limit laws for minor-closed classes of graphs, J. Combin. Theory Ser. B, 130 (2018), pp. 158--206.
10.
L. Libkin, Elements of Finite Model Theory, Texts Theoret. Comput. Sci. EATCS Ser., Springer-Verlag, Berlin, 2004.
11.
S. Janson, T. Luczak, and A. Ruciński, Random Graphs, Wiley, New York, 2000.
12.
L. B. Ostrovsky and M. E. Zhukovskii, Monadic second-order properties of very sparse random graphs, Ann. Pure Appl. Logic, 168 (2017), pp. 2087--2101.
13.
S. Shelah and J. H. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math. Soc., 1 (1988), pp. 97--115.
14.
J. H. Spencer, Threshold functions for extension statements, J. Combin. Theory Ser. A, 53 (1990), pp. 286--305.
15.
J. H. Spencer, Infinite spectra in the first order theory of graphs, Combinatorica, 10 (1990), pp. 95--102.
16.
J. H. Spencer, The Strange Logic of Random Graphs, Springer-Verlag, Berlin, 2001.
17.
J. Tyszkiewicz, On asymptotic probabilities of monadic second order properties, in Computer Science Logic (CSL 1992), Lecture Notes in Comput. Sci. 702, E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M. M. Richter, eds., Springer, Berlin, 1993, pp. 425--439.
18.
O. Verbitsky and M. Zhukovskii, The descriptive complexity of subgraph isomorphism without numerics, in Computer Science---Theory and Applications (CSR 2017), Lecture Notes in Comput. Sci. 10304, P. Weil, ed., Springer, Cham, 2017, pp. 308--322.
19.
N. K. Vereshagin and A. Shen, Languages and Calculus, MCCME, Moscow, 2012.
20.
M. E. Zhukovskii, Estimation of the number of maximal extensions in the random graph, Discrete Math. Appl., 24 (2012), pp. 79--107.
21.
M. E. Zhukovskii, On infinite spectra of first order properties of random graphs, Mosc. J. Comb. Number Theory, 6 (2016), pp. 73--102.
22.
M. E. Zhukovskii, Zero-one $k$-law, Discrete Math., 312 (2012), pp. 1670--1688.
23.
M. E. Zhukovskii and A. M. Raigorodskii, Random graphs: Models and asymptotic characteristics, Russian Math. Surveys, 70 (2015), pp. 33--81.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2916 - 2940
ISSN (online): 1095-7146

History

Submitted: 11 November 2016
Accepted: 18 October 2018
Published online: 18 December 2018

Keywords

  1. zero-one laws
  2. monadic properties
  3. random graphs

MSC codes

  1. 05C80
  2. 05C57

Authors

Affiliations

Funding Information

Russian National Fund : RNF 16-11-10014

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media