Joint Multichannel Deconvolution and Blind Source Separation

Blind source separation (BSS) is a challenging matrix factorization problem that plays a central role in multichannel imaging science. In a large number of applications, such as astrophysics, current unmixing methods are limited since real-world mixtures are generally affected by extra instrumental effects like blurring. Therefore, BSS has to be solved jointly with a deconvolution problem, which requires tackling a new inverse problem: deconvolution BSS (DBSS). In this article, we introduce an innovative DBSS approach, called DecGMCA (deconvolved generalized morphological component analysis), based on sparse signal modeling and an efficient alternative projected least-squares algorithm. Numerical results demonstrate that the DecGMCA algorithm performs very well on simulations. It further highlights the importance of jointly solving BSS and deconvolution instead of considering these two problems independently. Furthermore, the performance of the proposed DecGMCA algorithm is demonstrated on simulated radio-interferometric data.

  • 1.  A. Beck and  M. Teboulle , A fast iterative shrinkage-thresholding algorithm for linear inverse problems , SIAM J. Imaging Sci. , 2 ( 2009 ), pp. 183 -- 202 , doi:10.1137/080716542. LinkISIGoogle Scholar

  • 2.  J. Bobin J. Rapin A. Larue and  J. L. Starck , Sparsity and adaptivity for the blind separation of partially correlated sources , IEEE Trans. Signal Process. , 63 ( 2015 ), pp. 1199 -- 1213 , doi:10.1109/TSP.2015.2391071. CrossrefISIGoogle Scholar

  • 3.  J. Bobin J.-L. Starck J. Fadili and  Y. Moudden , Sparsity and morphological diversity in blind source separation , IEEE Trans. Image Process. , 16 ( 2007 ), pp. 2662 -- 2674 . CrossrefISIGoogle Scholar

  • 4.  J. Bobin F. Sureau J.-L. Starck A. Rassat and  P. Paykari , Joint Planck and WMAP CMB map reconstruction , Astronom. Astrophys. , 563 ( 2014 ), A105 , doi:10.1051/0004-6361/201322372. CrossrefISIGoogle Scholar

  • 5.  J.-F. Cai E. J. Candès and  Z. Shen , A singular value thresholding algorithm for matrix completion , SIAM J. Optim. , 20 ( 2010 ), pp. 1956 -- 1982 , doi:10.1137/080738970. LinkISIGoogle Scholar

  • 6.  P. L. Combettes and  V. R. Wajs , Signal recovery by proximal forward-backward splitting , Multiscale Model. Simul. , 4 ( 2005 ), pp. 1168 -- 1200 , doi:10.1137/050626090. LinkISIGoogle Scholar

  • 7.  L. Condat , A primal--dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms , J. Optim. Theory Appl. , 158 ( 2013 ), pp. 460 -- 479 , https://doi.org/10.1007/s10957-012-0245-9. CrossrefISIGoogle Scholar

  • 8.  P. Dewdney P. Hall R. Schilizzi and  T. Lazio , The square kilometre array , Proc. IEEE , 97 ( 2009 ), pp. 1482 -- 1496 , doi:10.1109/JPROC.2009.2021005. CrossrefISIGoogle Scholar

  • 9.  S. C. Douglas H. Sawada and  S. Makino , Natural gradient multichannel blind deconvolution and speech separation using causal fir filters , IEEE Trans. Speech Audio Process. , 13 ( 2005 ), pp. 92 -- 104 , doi:10.1109/TSA.2004.838538. CrossrefGoogle Scholar

  • 10.  M. Golbabaee S. Arberet and  P. Vandergheynst , Compressive source separation: Theory and methods for hyperspectral imaging , IEEE Trans. Image Process. , 22 ( 2013 ), pp. 5096 -- 5110 , doi:10.1109/TIP.2013.2281405. CrossrefISIGoogle Scholar

  • 11.  A. Hyvarinen , Fast and robust fixed-point algorithms for independent component analysis , IEEE Trans. Neural Networks , 10 ( 1999 ), pp. 626 -- 634 , doi:10.1109/72.761722. CrossrefISIGoogle Scholar

  • 12.  M. Kleinsteuber and  H. Shen , Blind source separation with compressively sensed linear mixtures , Signal Process. Lett. , 19 ( 2012 ), pp. 107 -- 110 , doi:10.1109/LSP.2011.2181945. CrossrefISIGoogle Scholar

  • 13.  K. Kokkinakis and  A. K. Nandi , Multichannel blind deconvolution for source separation in convolutive mixtures of speech , IEEE Trans. Audio Speech Language Process. , 14 ( 2006 ), pp. 200 -- 212 , doi:10.1109/TSA.2005.854109. CrossrefGoogle Scholar

  • 14.  Z. Koldovsky and  P. Tichavsky , Efficient variant of algorithm fastica for independent component analysis attaining the Cramer-Rao lower bound , in Proceedings of the IEEE/SP 13th Workshop on Statistical Signal Processing , 2005 , July 2005 , pp. 1090 -- 1095 , doi:10.1109/SSP.2005.1628758. Google Scholar

  • 15.  S. Makeig A. J. Bell T.-P. Jung and  T. J. Sejnowski , Independent component analysis of electroencephalographic data, in Advances in Neural Information Processing Systems 8, D. S. Touretzky and M. E. Hasselmo, eds., MIT Press, Cambridge , MA , 1996 , pp. 145 -- 151 , http://papers.nips.cc/paper/1091-independent-component-analysis-of-electroencephalographic-data.pdf. , http://papers.nips.cc/paper/1091-independent-component-analysis-of-electroencephalographic-data.pdf. Google Scholar

  • 16.  M. J. McKeown and  T. J. Sejnowski et al. , Independent component analysis of FMRI data: Examining the assumptions , Human Brain Mapping , 6 ( 1998 ), pp. 368 -- 372 . CrossrefISIGoogle Scholar

  • 17.  R. Neelamani H. Choi and  R. Baraniuk , ForWarD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , IEEE Trans. Signal Process. , 52 ( 2004 ), pp. 418 -- 433 , doi:10.1109/TSP.2003.821103. CrossrefISIGoogle Scholar

  • 18.  J. Rapin J. Bobin and  A. Larue . Starck, NMF with sparse regularizations in transformed domains , SIAM J. Imaging Sci. , 7 ( 2014 ), pp. 2020 -- 2047 , doi:10.1137/140952314. LinkISIGoogle Scholar

  • 19.  J.-L. Starck E. J. Candès and  D. L. Donoho , The curvelet transform for image denoising , IEEE Trans. Image Process. , 11 ( 2002 ), pp. 670 -- 684 . CrossrefISIGoogle Scholar

  • 20.  J.-L. Starck and  F. Murtagh , Image restoration with noise suppression using the wavelet transform , Astronom. Astrophys. , 288 ( 1994 ), pp. 342 -- 348 . ISIGoogle Scholar

  • 21.  M. N. Syed P. G. Georgiev and  P. M. Pardalos , Blind signal separation methods in computational neuroscience, in Modern Electroencephalographic Assessment Techniques: Theory and Applications, Springer , New York , 2015 , pp. 291 -- 322 . Google Scholar

  • 22.  A. Tonazzini I. Gerace and  F. Martinelli , Multichannel blind separation and deconvolution of images for document analysis , IEEE Trans. Image Process. , 19 ( 2010 ), pp. 912 -- 925 , doi:10.1109/TIP.2009.2038814. CrossrefISIGoogle Scholar

  • 23.  P. Tseng , Convergence of a block coordinate descent method for nondifferentiable minimization , J. Optim. Theory Appl. , 109 ( 2001 ), pp. 475 -- 494 , doi:10.1023/A:1017501703105. CrossrefISIGoogle Scholar

  • 24.  E. Vincent R. Gribonval and  C. Févotte , Performance measurement in blind audio source separation , IEEE Trans. Audio Speech Language Process. , 14 ( 2006 ), pp. 1462 -- 1469 , https://hal.inria.fr/inria-00544230. CrossrefISIGoogle Scholar

  • 25.  B. C. Vu͂ , A splitting algorithm for dual monotone inclusions involving cocoercive operators , Adv. Comput. Math. , 38 ( 2013 ), pp. 667 -- 681 . CrossrefISIGoogle Scholar

  • 26.  M. Zibulevsky and  B. Pearlmutter , Blind source separation by sparse decomposition in a signal dictionary , Neural Comput. , 13 ( 2001 ), pp. 863 -- 882 . CrossrefISIGoogle Scholar